A145991 Final prime in a run of more than 1 consecutive primes == 1 (mod 4).
17, 41, 101, 113, 197, 233, 281, 317, 353, 409, 461, 521, 617, 677, 709, 773, 809, 857, 881, 941, 1013, 1097, 1117, 1217, 1249, 1301, 1381, 1433, 1493, 1553, 1601, 1613, 1657, 1697, 1721, 1741, 1801, 1877, 1901, 1949, 1997, 2081, 2129, 2141, 2161, 2237
Offset: 1
Examples
a(1)=17 because this sequence includes consecutive runs of any length and this ending term > 1 in a run of 2 (comprising 13 and 17) is 17.
References
- Enoch Haga, Exploring Primes on Your PC and the Internet, 1994-2007. Pp. 30-31. ISBN 978-1-885794-24-6
Programs
-
UBASIC
10 'cluster primes 20 C=1 30 input "end #";L 40 for N=3 to L step 2 50 S=int(sqrt(N)) 60 for A=3 to S step 2 70 B=N/A 80 if int(B)*A=N then cancel for:goto 170 90 next A 100 C=C+1 110 E=N/4:E=int(E):R=N-(4*E) 120 if R=1 then print N;:C1=C1+1:T1=T1+1:print T1 130 if R=3 then T1=0 140 if R=3 then print " ";N;:C3=C3+1:T2=T2+1:print T2 150 if R=1 then T2=0 160 if T1>10 or T2>10 then stop 170 next 180 print "Total primes=";C;:print "Type A";C1;"Type B";C3