A146209 Integers a(n) for which the factorization in the real quadratic field Q(sqrt(a(n))) is not unique.
10, 15, 26, 30, 34, 35, 39, 42, 51, 55, 58, 65, 66, 70, 74, 78, 79, 82, 85, 87, 91, 95, 102, 105, 106, 110, 111, 114, 115, 119, 122, 123, 130, 138, 142, 143, 145, 146, 154, 155, 159, 165, 170, 174, 178, 182, 183, 185, 186, 187, 190, 194, 195
Offset: 1
Keywords
Examples
For n = 6, a(6) = 35 since 35 is the sixth positive squarefree integer u for which the factorization in Q(sqrt(u)) is not unique.
References
- Z. I. Borevich and I. R. Shafarevich, Zahlentheorie. Birkhäuser Verlag, Basel und Stuttgart (1966).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A003172.
Programs
-
Mathematica
Select[Range[200], SquareFreeQ[#] && NumberFieldClassNumber[Sqrt[#]] > 1 &] (* Alonso del Arte, Sep 05 2012 *)
Comments