A146310 Good approximation to the 10^n-th lower twin prime.
100, 3380, 75610, 1257632, 18456351, 252177334, 3285912624, 41374714817, 507584081641, 6100475249386, 72109024427766, 840671492062887, 9687559620379066, 110531285543842366, 1250315111094881329
Offset: 1
Keywords
Links
- Cino Hilliard, Counting and summing primes
- Thomas R. Nicely, Enumeration of twin primes less than 1e16
Programs
-
PARI
g(n) = { print1(floor(twinx2(10)),","); for(x=2,n,y=twinx(10^x);print1(floor(y)",")) } twinx(n) = { local(r1,r2,r,est); r1 = n; r2 = n*n; for(x=1,100, r=(r1+r2)/2.; /*Hardy-Littlewood integral approximation for pi_2(x).*/ est = Li_2(r); if(est <= n,r1=r,r2=r); ); r; } twinx2(n) = { local(x,tx,r1,r2,r,pw,b,e,est); if(n==1,return(3)); b=10; pw=log(n)/log(b); m=pw+1; r1 = 0; r2 = 7.213; for(x=1,100, r=(r1+r2)/2; est = b^(m+r); tx = Li_2(est); if(tx <= b^pw,r1=r,r2=r); ); est; } Li_2(x)=intnum(t=2,x,2*0.660161815846869573927812110014555778432623/log(t)^2)
Formula
Pi2(n) = number of twin primes <= n.
Twinpi(n) = number of twin prime pairs < n
Li_2(n)=intnum(t=2,n,2*c_2/log(t)^2)
The relationship n = Pi2(twinpi(n)) is used with a bisection routine where
Pi2(n) is the Hardy-Littlewood integral approximation for number of twin
primes
Comments