This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146313 #22 Jul 01 2017 02:16:38 %S A146313 3,243,23763,2328483,228167523,22358088723,2190864527283, %T A146313 214682365584963,21036680962799043,2061380051988721203, %U A146313 201994208413931878803,19793371044513335401443,1939548368153892937462563,190055946708036994535929683,18623543229019471571583646323 %N A146313 a(n) = cosh( (2n - 1)*arcsinh(sqrt(2)) )^2 = 1 - cos( (2n - 1)*arcsin(sqrt(3)) )^2. %H A146313 G. C. Greubel, <a href="/A146313/b146313.txt">Table of n, a(n) for n = 1..500</a> %H A146313 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1). %F A146313 a(n) = A146312(n) + 1. %F A146313 a(n) = sin((2n-1)*arcsin(sqrt(3)))^2 = 1+sinh((2n-1)*arcsinh(sqrt(2)))^2. - _Artur Jasinski_, Oct 30 2008 %F A146313 a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - _Colin Barker_, Oct 26 2014 %F A146313 G.f.: -3*x*(x^2-18*x+1) / ((x-1)*(x^2-98*x+1)). - _Colin Barker_, Oct 26 2014 %p A146313 A146313 := proc(n) cosh( (2*n - 1)*arcsinh(sqrt(2)) )^2; expand(%) ; simplify(%) ; end proc: # _R. J. Mathar_, Feb 26 2011 %t A146313 Table[Round[N[Cosh[(2 n - 1) ArcSinh[Sqrt[2]]], 300]^2], {n, 1, 50}] (* _Artur Jasinski_, Oct 30 2008 *) %o A146313 (PARI) Vec(-3*x*(x^2-18*x+1) / ((x-1)*(x^2-98*x+1)) + O(x^100)) \\ _Colin Barker_, Oct 26 2014 %Y A146313 Cf. A146311, A146312. %K A146313 nonn,easy %O A146313 1,1 %A A146313 _Artur Jasinski_, Oct 29 2008 %E A146313 More terms from _Colin Barker_, Oct 26 2014