This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146333 #18 Mar 31 2020 03:02:58 %S A146333 31,40,46,71,76,88,91,92,96,104,108,152,153,155,176,188,192,200,206, %T A146333 207,234,238,261,266,276,279,280,282,320,328,335,336,348,366,378,383, %U A146333 386,392,408,414,450,476,477,480,488,501,503,504,505,540,542,555,558,581 %N A146333 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 8. %C A146333 For primes in this sequence see A146353. %H A146333 Amiram Eldar, <a href="/A146333/b146333.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale) %e A146333 a(1) = 31 because continued fraction of (1+sqrt(31))/2 = 3, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, ... has period (3, 1, 1, 10, 1, 1, 3, 5) length 8. %p A146333 A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146333 := proc(n) RETURN(A146326(n) = 8) ; end: for n from 2 to 700 do if isA146333(n) then printf("%d,",n) ; fi; od: # _R. J. Mathar_, Sep 06 2009 %t A146333 cf8Q[n_]:=Module[{sqrt=Sqrt[n]},!IntegerQ[sqrt]&&Length[ ContinuedFraction[ (1+sqrt)/2][[2]]]==8]; Select[Range[600],cf8Q] (* _Harvey P. Dale_, Sep 06 2012 *) %Y A146333 Cf. A000290, A078370, A146326-A146345, A146348-A146360. %K A146333 nonn %O A146333 1,1 %A A146333 _Artur Jasinski_, Oct 30 2008 %E A146333 155 and 279 etc. added, 311 etc. removed by _R. J. Mathar_, Sep 06 2009