This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146339 #20 Mar 31 2020 03:01:41 %S A146339 172,191,217,232,249,310,311,329,343,344,355,369,391,393,416,428,431, %T A146339 446,496,513,520,524,536,537,550,559,589,647,655,679,682,686,700,704, %U A146339 748,760,768,775,802,816,848,851,872,927,995,996,1036,1058,1079,1080,1120,1136 %N A146339 Numbers k such that the continued fraction of (1 + sqrt(k))/2 has period 16. %C A146339 For primes in this sequence see A146361. %H A146339 Amiram Eldar, <a href="/A146339/b146339.txt">Table of n, a(n) for n = 1..10000</a> %e A146339 a(1) = 191 because continued fraction of (1+sqrt(191))/2 = 7, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13, 2, 2, 3, 1, 1, 4, 1, 26... has period (2, 2, 3, 1, 1, 4, 1, 26, 1, 4, 1, 1, 3, 2, 2, 13) length 16. %p A146339 A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: %p A146339 isA146339 := proc(n) RETURN(A146326(n) = 16) ; end: %p A146339 for n from 2 to 1000 do if isA146339(n) then printf("%d,",n) ; fi; od: # _R. J. Mathar_, Sep 06 2009 %t A146339 Select[Range[1000], !IntegerQ @ Sqrt[#] && Length[ContinuedFraction[(1 + Sqrt[#])/2][[2]]] == 16 &] (* _Amiram Eldar_, Mar 31 2020 *) %Y A146339 Cf. A000290, A078370, A146326-A146345, A146348-A146360. %K A146339 nonn %O A146339 1,1 %A A146339 _Artur Jasinski_, Oct 30 2008 %E A146339 311 inserted, sequence extended by _R. J. Mathar_, Sep 06 2009 %E A146339 More terms from _Amiram Eldar_, Mar 31 2020