cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146352 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 7: primes in A146332.

This page as a plain text file.
%I A146352 #11 Mar 30 2020 05:40:25
%S A146352 89,109,113,137,373,389,509,653,797,853,997,1009,1493,1997,2309,2621,
%T A146352 2677,3797,4973,7817,7873,9829,9833,12197,12269,12821,14009,15773,
%U A146352 16661,16673,18253,18269,20389,21557,24197,24533,25037,25741,30677,31973,33941,34253,35977
%N A146352 Primes p such that continued fraction of (1 + sqrt(p))/2 has period 7: primes in A146332.
%H A146352 Amiram Eldar, <a href="/A146352/b146352.txt">Table of n, a(n) for n = 1..2000</a>
%p A146352 A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146352 := proc(n) RETURN(isprime(n) and A146326(n) = 7) ; end: for n from 2 to 13000 do if isA146352(n) then printf("%d,\n",n) ; fi; od: # _R. J. Mathar_, Sep 06 2009
%t A146352 Select[Range[2*10^4], PrimeQ[#] && Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 7 &] (* _Amiram Eldar_, Mar 30 2020 *)
%Y A146352 Cf. A000290, A050950-A050969, A078370, A146326-A146345, A146348-A146360.
%K A146352 nonn
%O A146352 1,1
%A A146352 _Artur Jasinski_, Oct 30 2008
%E A146352 607 removed, 797 inserted by _R. J. Mathar_, Sep 06 2009
%E A146352 More terms from _Amiram Eldar_, Mar 30 2020