This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146481 #11 Aug 06 2017 22:28:13 %S A146481 2,9,6,6,7,5,1,3,4,7,4,3,5,9,1,0,3,4,5,7,0,1,5,5,0,2,0,2,1,9,1,4,2,8, %T A146481 6,4,8,6,4,8,3,1,5,1,9,1,7,8,9,4,7,8,9,0,8,1,6,7,3,5,7,3,3,1,6,5,9,0, %U A146481 6,1,6,2,9,1,5,1,9,6,0,8,8,8,3,6,6,7,4,8,1,6,4,0,2,1,2,6,2,2,1,4,5,4,1,7,7 %N A146481 Decimal expansion of Product_{n>=2} (1 - 1/(n*(n-1))). %C A146481 Product of Artin's constant A005596 and the equivalent almost-prime products. %H A146481 M. Chamberland, A. Straub, <a href="http://arxiv.org/abs/1309.3455">On gamma constants and infinite products</a>, arXiv:1309.3455 %H A146481 R. J. Mathar, <a href="http://arxiv.org/abs/0903.2514">Hardy-Littlewood constants embedded into infinite products over all positive integers</a>, arXiv:0903.2514 [math.NT], first line Table 3. %F A146481 The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r=1. %F A146481 s*Sum_{j=1..floor(s/2)} binomial(s-j-1, j-1)/j = A001610(s-1). %F A146481 Equals 1/Product_{k=1..2} Gamma(1-x_k) = -sin(A094886)/A000796, where x_k are the 2 roots of the polynomial x*(x+1)-1. [_R. J. Mathar_, Feb 20 2009] %e A146481 0.2966751347435910345... = (1 - 1/2)*(1 - 1/6)*(1 - 1/12)*(1 - 1/20)*... %p A146481 phi := (1+sqrt(5))/2; evalf(-sin(Pi*phi)/Pi) ; # _R. J. Mathar_, Feb 20 2009 %t A146481 RealDigits[-Cos[Pi*Sqrt[5]/2]/Pi, 10, 105] // First (* _Jean-François Alcover_, Feb 11 2013 *) %Y A146481 Cf. A005596. %K A146481 nonn,cons %O A146481 0,1 %A A146481 _R. J. Mathar_, Feb 13 2009 %E A146481 More terms from _Jean-François Alcover_, Feb 11 2013