cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146510 Numbers congruent to {1, 4} mod 15.

This page as a plain text file.
%I A146510 #20 Sep 09 2022 22:37:50
%S A146510 1,4,16,19,31,34,46,49,61,64,76,79,91,94,106,109,121,124,136,139,151,
%T A146510 154,166,169,181,184,196,199,211,214,226,229,241,244,256,259,271,274,
%U A146510 286,289,301,304,316,319,331,334,346,349,361,364,376,379,391,394,406
%N A146510 Numbers congruent to {1, 4} mod 15.
%C A146510 Positive integers k such that Hypergeometric[k/5,(5-k)/5,1/2,3/4] = 2Cos[Pi/5].
%H A146510 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1).
%F A146510 a(2k-1) = 15*(k-1)+1, a(2k) = 15*(k-1)+4, where k>0.
%F A146510 G.f.: x*(1 + 3*x + 11*x^2)/((1 - x)^2*(1 + x)). - _Ilya Gutkovskiy_, Dec 06 2016
%F A146510 E.g.f.: 11 + ((30*x - 35)*exp(x) - 9*exp(-x))/4. - _David Lovler_, Sep 08 2022
%t A146510 Select[Range[500],MemberQ[{1,4},Mod[#,15]]&] (* _Harvey P. Dale_, Jan 21 2016 *)
%Y A146510 Cf. A146507, A146509, A146511, A146512.
%K A146510 nonn
%O A146510 1,2
%A A146510 _Artur Jasinski_, Oct 30 2008
%E A146510 Typo in name corrected by _N. J. A. Sloane_, Jan 21 2016
%E A146510 Formula and crossrefs corrected by _Ray Chandler_, Dec 06 2016