cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146511 Numbers congruent to {5, 17} modulo 66.

This page as a plain text file.
%I A146511 #26 Sep 11 2022 16:14:47
%S A146511 5,17,71,83,137,149,203,215,269,281,335,347,401,413,467,479,533,545,
%T A146511 599,611,665,677,731,743,797,809,863,875,929,941,995,1007,1061,1073,
%U A146511 1127,1139,1193,1205,1259,1271,1325,1337,1391,1403,1457,1469,1523,1535,1589
%N A146511 Numbers congruent to {5, 17} modulo 66.
%C A146511 Positive integers k such that Hypergeometric[k/22,(22-k)/22,1/2,3/4] = 2*cos(Pi/11).
%H A146511 Harvey P. Dale, <a href="/A146511/b146511.txt">Table of n, a(n) for n = 1..1000</a>
%H A146511 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F A146511 a(2k-1) = 66*(k-1)+5, a(2k) = 66*(k-1)+17, where k>0.
%F A146511 G.f.: x*(5 + 12*x + 49*x^2)/((1 - x)^2*(1 + x)). - _Ilya Gutkovskiy_, Dec 06 2016
%F A146511 E.g.f.: 49 + ((66*x - 77)*exp(x) - 21*exp(-x))/2. - _David Lovler_, Sep 10 2022
%t A146511 Select[Range[1600],MemberQ[{5,17},Mod[#,66]]&]  (* _Ray Chandler_, Dec 06 2016 *)
%t A146511 #+{5,17}&/@(66*Range[0,30])//Flatten (* _Harvey P. Dale_, Mar 26 2019 *)
%Y A146511 Cf. A146507, A146509, A146510, A146512.
%K A146511 nonn,easy
%O A146511 1,1
%A A146511 _Artur Jasinski_, Oct 30 2008
%E A146511 Description, formula and crossrefs corrected by _Ray Chandler_, Dec 06 2016