cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146745 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with minus the first and last row terms and powers of x divided out: f(n)=3^n - 2*n - 1; q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x.

This page as a plain text file.
%I A146745 #9 Feb 27 2021 22:09:09
%S A146745 224,1672,1672,10528,23528,10528,60636,259688,259688,60636,331584,
%T A146745 2485232,4674944,2485232,331584,1756304,21707888,69413168,69413168,
%U A146745 21707888,1756304,9116096,178300784,906923072,1527092216,906923072
%N A146745 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with minus the first and last row terms and powers of x divided out: f(n)=3^n - 2*n - 1; q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x.
%C A146745 Row sums starting with n=4 are {224, 3344, 44584, 640648, 10308576, 185754720, 3715772120}. First elements in each row are {224, 1672, 1672, 10528, 60636, 331584, 1756304, 9116096}. Subtracting out the row terms gives the middle elements of the difference.
%F A146745 f(n) = 3^n - 2*n - 1;
%F A146745 q(x,n) = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
%F A146745 p(x,n) = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x;
%F A146745 t(n,m) = Coefficients(p(x,n)) with n starting at 4.
%e A146745 Triangle starts
%e A146745 {224},
%e A146745 {1672, 1672},
%e A146745 {10528, 23528, 10528},
%e A146745 {60636, 259688, 259688, 60636},
%e A146745 {331584, 2485232, 4674944, 2485232, 331584},
%e A146745 {1756304, 21707888, 69413168, 69413168, 21707888, 1756304},
%e A146745 {9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096}
%t A146745 q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 4, 10}]; Flatten[%]
%Y A146745 Cf. A061981, A060187.
%K A146745 nonn,tabl
%O A146745 2,1
%A A146745 _Roger L. Bagula_, Nov 01 2008