This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146891 #15 Apr 09 2024 08:39:08 %S A146891 1,6,20,72,72,72,20,72,72,17280,4800,17280,72,17280,1152000,5184,5184, %T A146891 5184,96000,5184,345600,1244160,320000,1244160,82944000,89579520, %U A146891 71663616000,298598400,1244160,82944000,23040000,82944000,19906560000 %N A146891 Terminal point of a repeated reduction of usigma starting at 2^n. %C A146891 Let PF_p(n) be the highest power of p dividing n. Examples are PF_2(n) = A006519(n), PF_3(n) = A038500(n) and PF_5(n) = 5^A112765(n) for the cases p = 2, 3, and 5. %C A146891 Multi-indexed PF_(p1,p2,...)(n) are defined as the products PF_(p1)(n)*PF_(p2)(n)*... %C A146891 For each n, we define an auxiliary sequence b(k) starting at b(0) = 2^n by b(k+1) = A034448(b(k))/PF_(2,3,5)(A034448(b(k)), that is, repeated removal of all powers of 2, 3 and 5 from the unitary sigma value. b(k) terminates at some k with b(k)=1. In addition there is an auxiliary parallel sequence c(k) defined by c(0)=2^n and recursively c(k+1) = c(k)*PF_(3,5)(A034448(b(k)))/A006519(A034448(b(k))), reducing 2^n by the powers of 2 which are divided out of the sequence b. %C A146891 The sequence is defined by a(n) = c(k), the auxiliary sequence c at the point where b terminates. %C A146891 All values of the sequence a(n) are 5-smooth, i.e., members of A051037. %e A146891 n=5 %e A146891 b(n) : 2^5 -> 11 -> 1 %e A146891 c(n) : 2^5 -> 2^5*3 -> 2^3*3^2 %e A146891 So a(5) = c(2) = 2^3*3^2 = 72. %p A146891 PF := proc(n,p) local nshf,a ; a := 1; nshf := n ; while (nshf mod p ) = 0 do nshf := nshf/p ; a := a*p ; od: a ; end: %p A146891 A146891 := proc(n) local b,a,k,t ; %p A146891 b := [2^n] ; %p A146891 while op(-1,b) <> 1 do %p A146891 t := A034448(op(-1,b)) ; %p A146891 b := [op(b), t/A006519(t)/ A038500(t)/PF(t,5) ] ; %p A146891 od: %p A146891 a := 2^n ; %p A146891 for k from 2 to nops(b) do %p A146891 t := A034448(op(k-1,b)) ; %p A146891 a := a/ A006519(t) *A038500(t)*PF(t,5) ; %p A146891 od: %p A146891 a ; %p A146891 end: %p A146891 # _R. J. Mathar_, Jun 24 2009 %t A146891 PF[n_, p_] := p^IntegerExponent[n, p]; %t A146891 usigma[n_] := If[n == 1, 1, Times @@ (1+Power @@@ FactorInteger[n])]; %t A146891 A146891[n_] := Module[{b, a, k, t}, %t A146891 b = {2^n}; %t A146891 While[b[[-1]] != 1, %t A146891 t = usigma[b[[-1]]]; %t A146891 b = Append[b, t/PF[t, 2]/PF[t, 3]/PF[t, 5]]]; %t A146891 a = 2^n; %t A146891 For[k = 2, k <= Length[b], k++, %t A146891 t = usigma[b[[k-1]]]; %t A146891 a = a/PF[t, 2]*PF[t, 3]*PF[t, 5]]; %t A146891 a]; %t A146891 Table[A146891[n], {n, 0, 32}] (* _Jean-François Alcover_, Apr 09 2024, after _R. J. Mathar_ *) %Y A146891 Cf. A146892, A151659. %K A146891 nonn %O A146891 0,2 %A A146891 _Yasutoshi Kohmoto_, Apr 17 2009 %E A146891 More terms from _R. J. Mathar_, Jun 24 2009 %E A146891 Edited by _R. J. Mathar_, Jul 02 2009 %E A146891 Description of relation between a(n) and c(k) corrected by _R. J. Mathar_, Jul 07 2009