This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146892 #7 Aug 06 2017 21:35:25 %S A146892 1,6,6,72,72,72,6,72,72,5184,6,5184,72,5184,31104,5184,5184,5184,2592, %T A146892 5184,432,373248,36,373248,31104,26873856,26873856,26873856,373248, %U A146892 31104,36,31104,2239488,2239488,1934917632,26873856,31104,2239488 %N A146892 For definition see comments lines. %C A146892 Let USigma denote the unitary sigma function, A034448. %C A146892 As in A146891, let PF_p(n) denote the largest power of the prime p dividing n. PF_2 is A006519, and PF_3 is A038500. Furthermore define PF_1(n)=1. %C A146892 Extension to multi-prime-indices is done by multiplying the corresponding functions: PF_{p,q,..}(n) = PF_p(n)*PF_q(n)*... An example of this is PF_{2,3} = A065331. %C A146892 [How to compute c(m)] %C A146892 Case of Base Primes = {2}{3} %C A146892 c(0)=2^m, b(0)=2^m %C A146892 c(n)=c(n-1)/PF_2[USigma[b(n-1)]]*PF_3[USigma[b(n-1)]] %C A146892 b(n)=USigma[b(n-1)]/ PF_2,3[USigma[b(n-1)]] %C A146892 IF b(k)=1 THEN END %C A146892 a(m)=c(k) %C A146892 Sequence gives a(m) %C A146892 Factorization of term becomes 2^r*3^s. %p A146892 A146892 := proc(n) local b,a,k ; %p A146892 b := [2^n] ; %p A146892 while op(-1,b) <> 1 do %p A146892 b := [op(b), A065330(A034448(op(-1,b))) ] ; %p A146892 od: %p A146892 a := 2^n ; %p A146892 for k from 2 to nops(b) do %p A146892 a := a/ A006519(A034448(op(k-1,b))) *A038500(A034448(op(k-1,b))) ; %p A146892 od: %p A146892 a ; %p A146892 end: # _R. J. Mathar_, Jun 24 2009 %Y A146892 Cf. A146891. %K A146892 nonn,uned %O A146892 0,2 %A A146892 _Yasutoshi Kohmoto_, Apr 17 2009 %E A146892 More terms from _R. J. Mathar_, Jun 24 2009