This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146962 #23 Sep 08 2022 08:45:38 %S A146962 1,5,31,215,1561,11525,85591,636935,4743121,35329445,263175151, %T A146962 1960492055,14604592681,108796577765,810478516711,6037650189575, %U A146962 44977410078241,335058747180485,2496016680318271,18594050606753495 %N A146962 a(n) = 10*a(n-1) - 19*a(n-2) with a(0)=1, a(1)=5. %C A146962 Binomial transform of A143648. %C A146962 Inverse binomial transform of A145301. %H A146962 Vincenzo Librandi, <a href="/A146962/b146962.txt">Table of n, a(n) for n = 0..1000</a> %H A146962 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-19). %F A146962 a(n) = ((5 + sqrt(6))^n + (5 - sqrt(6))^n)/2. %F A146962 G.f.: (1-5*x)/(1-10*x+19*x^2). - _Philippe Deléham_ and _Klaus Brockhaus_, Nov 05 2008 %F A146962 a(n) = (Sum_{k=0..n} A098158(n,k)*5^(2*k)*6^(n-k))/5^n. - _Philippe Deléham_, Nov 06 2008 %F A146962 E.g.f.: exp(5*x)*cosh(sqrt(6)*x). - _G. C. Greubel_, Jan 08 2020 %p A146962 seq(coeff(series((1-5*x)/(1-10*x+19*x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Jan 08 2020 %t A146962 LinearRecurrence[{10,-19},{1,5},30] (* _Harvey P. Dale_, Apr 27 2014 *) %t A146962 CoefficientList[Series[(1-5x)/(1-10x+19x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Apr 28 2014 *) %o A146962 (Magma) Z<x>:= PolynomialRing(Integers()); N<r6>:=NumberField(x^2-6); S:=[ ((5+r6)^n+(5-r6)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Nov 05 2008 %o A146962 (PARI) my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+19*x^2)) \\ _G. C. Greubel_, Jan 08 2020 %o A146962 (Sage) %o A146962 def A146962_list(prec): %o A146962 P.<x> = PowerSeriesRing(ZZ, prec) %o A146962 return P( (1-5*x)/(1-10*x+19*x^2) ).list() %o A146962 A146962_list(30) # _G. C. Greubel_, Jan 08 2020 %o A146962 (GAP) a:=[1,5];; for n in [3..30] do a[n]:=10*a[n-1]-19*a[n-2]; od; a; # _G. C. Greubel_, Jan 08 2020 %Y A146962 Cf. A098158, A143648, A145301. %K A146962 nonn,easy %O A146962 0,2 %A A146962 Al Hakanson (hawkuu(AT)gmail.com), Nov 03 2008 %E A146962 Extended beyond a(7) by _Klaus Brockhaus_, Nov 05 2008 %E A146962 Edited by _Klaus Brockhaus_, Jul 15 2009 %E A146962 Name from _Philippe Deléham_ and _Klaus Brockhaus_, Nov 05 2008