This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146973 #9 Nov 20 2022 10:53:09 %S A146973 1,-1,1,2,-1,0,-2,2,0,1,3,-2,0,-1,1,-3,3,0,2,-1,1,4,-3,0,-2,2,-1,2,-4, %T A146973 4,0,3,-2,2,-2,2,5,-4,0,-3,3,-2,4,-2,3,-5,5,0,4,-3,3,-4,4,-3,4,6,-5,0, %U A146973 -4,4,-3,6,-4,5,-6,6,0,5,-4,4,-6,6,-6,8,-5,7 %N A146973 Eigentriangle, row sums = A000931 starting with offset 3. %C A146973 Row sums and right border = the Padovan sequence, A000931 starting with offset 3: (1, 1, 0, 1, 1, 1, 2, 2, 3,...). %C A146973 Sum of n-th row terms = rightmost term of next row. %F A146973 Triangle read by rows, T * Q, where T = an infinite lower triangular matrix with (1, -1, 2, -2, 3, -3,...) in every column and Q = an infinite lower triangular matrix with the Padovan sequence, A000931 as the main diagonal starting with offset 3: (1, 1, 0, 1, 1, 1, 2, 2, 3,...). The rest of triangle Q = all zeros. This triangle = T * Q. %e A146973 First few rows of the triangle = %e A146973 1; %e A146973 -1, 1; %e A146973 2, -1, 0; %e A146973 -2, 2, 0, 1; %e A146973 3, -2, 0, -1, 1; %e A146973 -3, 3, 0, 2, -1, 1; %e A146973 4, -3, 0, -2, 2, -1, 2; %e A146973 -4, 4, 0, 3, -2, 2, -2, 2; %e A146973 5, -4, 0, -3, 3, -2, 4, -2, 3; %e A146973 -5, 5, 0, 4, -3, 3, -4, 4, -3, 4; %e A146973 6, -5, 0, -4, 4, -3, 6, -4, 6, -4, 5; %e A146973 -6, 6, 0, 5, -4, 4, -6, 6, -6, 8, -5, 7; %e A146973 7, -6, 0, -5, 5, -4, 8, -6, 9, -8, 10, -7, 9 %e A146973 -7, 7, 0, 6, -5, 5, -8, 8, -9, 12, -10, 14, -9, 12; %e A146973 ... %e A146973 Row 6 = (-2, 2, 0, 1) = termwise products of (-2, 2, 0, 1) and (1, 1, 0, 1). %Y A146973 Cf. A000931. %K A146973 eigen,tabl,sign %O A146973 3,4 %A A146973 _Gary W. Adamson_, Nov 03 2008