This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A146987 #7 Sep 08 2022 08:45:38 %S A146987 1,1,1,1,5,1,1,12,12,1,1,31,60,31,1,1,86,253,253,86,1,1,249,987,1478, %T A146987 987,249,1,1,736,3666,7325,7325,3666,736,1,1,2195,13150,32861,43810, %U A146987 32861,13150,2195,1,1,6570,45963,137865,229761,229761,137865,45963,6570,1 %N A146987 Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 3^(n-1)*binomial(n-2, k -1) otherwise. %C A146987 Row sums are: {1, 2, 7, 26, 124, 680, 3952, 23456, 140224, 840320, 5039872}. %H A146987 G. C. Greubel, <a href="/A146987/b146987.txt">Rows n = 0..100 of triangle, flattened</a> %F A146987 T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 3^(n-1)*binomial(n-2, k -1) otherwise. %e A146987 Triangle begins as: %e A146987 1; %e A146987 1, 1; %e A146987 1, 5, 1; %e A146987 1, 12, 12, 1; %e A146987 1, 31, 60, 31, 1; %e A146987 1, 86, 253, 253, 86, 1; %e A146987 1, 249, 987, 1478, 987, 249, 1; %p A146987 q:=3; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # _G. C. Greubel_, Jan 09 2020 %t A146987 Table[If[n<2, Binomial[n, m], Binomial[n, m] + 3^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten %o A146987 (PARI) T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 3^(n-1)*binomial(n-2,k-1) ); \\ _G. C. Greubel_, Jan 09 2020 %o A146987 (Magma) T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >; %o A146987 [T(n,k,3): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 09 2020 %o A146987 (Sage) %o A146987 @CachedFunction %o A146987 def T(n, k, q): %o A146987 if (n<2): return binomial(n,k) %o A146987 else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1) %o A146987 [[T(n, k, 3) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Jan 09 2020 %o A146987 (GAP) %o A146987 T:= function(n,k,q) %o A146987 if n<2 then return Binomial(n,k); %o A146987 else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1); %o A146987 fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k,3) ))); # _G. C. Greubel_, Jan 09 2020 %Y A146987 Cf. A028262. %K A146987 nonn,tabl %O A146987 0,5 %A A146987 _Roger L. Bagula_, Nov 04 2008 %E A146987 Edited by _G. C. Greubel_, Jan 09 2020