A147292 Eigentriangle.
1, 1, 1, 2, 1, 2, 5, 2, 2, 5, 13, 5, 4, 5, 14, 34, 13, 10, 10, 14, 41, 89, 34, 26, 25, 28, 41, 122, 233, 89, 68, 65, 70, 82, 122, 365, 610, 233, 178, 170, 182, 205, 244, 365, 1094, 1597, 610, 466, 445, 476, 533, 610, 730, 1094, 3281
Offset: 0
Examples
First few rows of the triangle = 1; 1, 1; 2, 1, 2; 5, 2, 2, 5; 13, 5, 4, 5, 14; 34, 13, 10, 10, 14, 41; 89, 34, 26, 25, 28, 41, 122; 233, 89, 68, 65, 70, 82, 122, 365; 610, 233, 178, 170, 182, 205, 244, 365, 1094; 1597, 610, 466, 445, 476, 533, 610, 730, 1094, 3281; 4181, 1597, 1220, 1665, 1246, 1394, 1586, 1825, 2188, 3281, 9842; 10946, 4181, 3194, 3050, 3262, 3649, 4148, 4745, 5470, 6562, 9842, 29525; ... Row 4 = (13, 5, 4, 5, 14) = termwise products of (13, 5, 2, 1, 1) and (1, 1, 2, 5, 14).
Formula
Let M = an infinite lower triangular matrix with odd-indexed Fibonacci numbers in every column prefaced with a 1: (1, 1, 2, 5, 13, 34, ...). Q = an infinite lower triangular matrix with A007051 prefaced with a 1 as the main diagonal: (1, 1, 2, 5, 14, 41, 122, 365, 1094, ...); and the rest zeros.
A147292 = M * Q
Comments