This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147302 #14 Jun 15 2021 01:54:40 %S A147302 2,9,81,128,2401,4375,6436343 %N A147302 Numbers k where records occur in the expression log(k) / log(A147298(k)). %C A147302 Numbers a(n) such that a(n)/R(m a(n)(a(n)-m)) > a(n-1)/R(g a(n-1)(a(n-1)-g)) 0 < m < a(n) and 0 < g < a(n-1). %C A147302 This sequence is list of successive records in the abc conjecture. %C A147302 No more terms up to 10^20. %C A147302 For smallest values of function rad(m*n*(n-m)) see A147298. %C A147302 For biggest values of function rad(m*n*(n-m)) see A147299. %C A147302 For numbers m for which rad(m*n*(n-m)) reaches a minimal value see A147300. %C A147302 For numbers m for which rad(m*n*(n-m)) reaches a maximal value see A147301. %H A147302 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_901.htm">Puzzle 901. A question about consecutive integers</a>, The Prime Puzzles and Problems Connection. %t A147302 logmax = 0; aa = {}; Do[min = 10^100; max = 0; ile = 0; Do[If[GCD[m, n, n - m] == 1, ile = ile + 1; s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[aa, n]; Print[{N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]], {n, 2, 2500}]; aa %Y A147302 Cf. A085152, A085153, A147298-A147307. %K A147302 nonn,more %O A147302 1,1 %A A147302 _Artur Jasinski_, Nov 05 2008