cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147303 Numbers k where records occur in expression Log[A147298(k)]/Log[k] k=2,3,4,...

This page as a plain text file.
%I A147303 #17 May 10 2025 09:01:56
%S A147303 2,3,6,7,14,15,22,30,42,62,66,70,78,102,114,158,166,182,186,210,222,
%T A147303 230,255,258,282,318,330,402,430,438,462,470,474,494,498,510,570,582,
%U A147303 598,690,710,786,798,822,870,906,930,942,1002,1038,1074,1110,1122,1146,1158
%N A147303 Numbers k where records occur in expression Log[A147298(k)]/Log[k] k=2,3,4,...
%C A147303 Limit k->Infinity Log[A147298(k)]/Log[k] = 2.
%C A147303 Values m for which records occur, see A147301.
%t A147303 logmin = 10^10; logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; hh = {}; ii = {}; jj = {}; Do[min = 10^100; max = 0; Do[If[GCD[m, n, n - m] == 1, s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]]; If[(Log[n]/Log[min]) < logmin, logmin = (Log[n]/Log[min]); AppendTo[hh, {N[logmin], n, mmin, min, mmax, max}]; AppendTo[ii, n]]; AppendTo[bb, max]; AppendTo[dd, mmin], {n, 2, 1200}]; ii
%Y A147303 Cf. A147298-A147302, A147304-A147307.
%K A147303 nonn
%O A147303 1,1
%A A147303 _Artur Jasinski_, Nov 06 2008