cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A147312 Riordan array [1,log(sec(x)+tan(x))].

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 5, 0, 10, 0, 1, 0, 0, 40, 0, 20, 0, 1, 0, 61, 0, 175, 0, 35, 0, 1, 0, 0, 768, 0, 560, 0, 56, 0, 1, 0, 1385, 0, 4996, 0, 1470, 0, 84, 0, 1, 0, 0, 24320, 0, 22720, 0, 3360, 0, 120, 0, 1, 0, 50521, 0, 214445, 0, 81730, 0, 6930, 0, 165, 0, 1
Offset: 0

Views

Author

Paul Barry, Nov 05 2008

Keywords

Comments

Row sums are A000111. Inverse is A147311.
Production array is [cosh(x),x] with a column of 0's prepended.
The product [sec(x),x]*A147312 is A147309.
Apart from signs, same as A147311. - N. J. A. Sloane, Nov 07 2008
Also the Bell transform of the absolute Euler numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 1, 0, 1,
0, 0, 4, 0, 1,
0, 5, 0, 10, 0, 1,
0, 0, 40, 0, 20, 0, 1
		

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> abs(euler(n)), 10); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Abs[EulerE[#]] &, rows];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

T(n,m)=sum(k=m..n, A147315(n,k)*stirling1(k,m)), n>0,k>0, T(0,0)=1, T(0,k)=0, k>0. [From Vladimir Kruchinin, Mar 10 2011]

Extensions

More terms from Jean-François Alcover, Jun 28 2018
Showing 1-1 of 1 results.