This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147528 #21 Jan 06 2024 00:59:05 %S A147528 5327263,684056220943393618,87836547552751547393253180439, %T A147528 11278691501915643258450349467913578516874, %U A147528 1448245468880558621537182415402996832263200922550703,185962612575832140241603356412217415201039246491645779158754978 %N A147528 Numbers x such that (x + 103)^3 - x^3 is a square. %H A147528 G. C. Greubel, <a href="/A147528/b147528.txt">Table of n, a(n) for n = 1..50</a> %H A147528 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (128405450991,-128405450991,1). %F A147528 a(n+2) = 128405450990*a(n+1) - a(n) + 6612880725882. %F A147528 G.f.: 103*x*(51721 + 64202725495*x - 51722*x^2) / ((1-x)*(1 -128405450990*x +x^2)). - _Colin Barker_, Oct 21 2014 %e A147528 a(1) = 5327263 because the first relation is : (5327263 + 103)^3 - 5327263^3 = 93645643^2. %p A147528 seq(coeff(series(103*x*(51721 +64202725495*x -51722*x^2)/((1-x)*(1 -128405450990*x +x^2)), x, n+1), x, n), n = 1..20); # _G. C. Greubel_, Jan 10 2020 %t A147528 LinearRecurrence[{128405450991, -128405450991, 1}, {5327263, 684056220943393618, 87836547552751547393253180439}, 20] (* _G. C. Greubel_, Jan 10 2020 *) %o A147528 (PARI) Vec(103*x*(51721+64202725495*x-51722*x^2)/((1-x)*(1-128405450990*x+x^2)) + O(x^20)) \\ _Colin Barker_, Oct 21 2014 %o A147528 (Magma) I:=[5327263, 684056220943393618, 87836547552751547393253180439]; [n le 3 select I[n] else 128405450991*Self(n-1) - 128405450991*Self(n-2) + Self(n-3): n in [1..20]]; // _G. C. Greubel_, Jan 10 2020 %o A147528 (Sage) %o A147528 def A147528_list(prec): %o A147528 P.<x> = PowerSeriesRing(ZZ, prec) %o A147528 return P( 103*x*(51721 + 64202725495*x - 51722*x^2) / ((1-x)*(1 -128405450990*x +x^2)) ).list() %o A147528 a=A147528_list(20); a[1:] # _G. C. Greubel_, Jan 10 2020 %o A147528 (GAP) a:=[5327263, 684056220943393618, 87836547552751547393253180439];; for n in [4..20] do a[n]:=128405450991*a[n-1] - 128405450991*a[n-2] + a[n-3]; od; a; # _G. C. Greubel_, Jan 10 2020 %Y A147528 Cf. A147527, A147529, A147530. %K A147528 nonn,easy %O A147528 1,1 %A A147528 _Richard Choulet_, Nov 06 2008 %E A147528 Editing and a(6) from _Colin Barker_, Oct 21 2014