This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147537 #21 Sep 08 2022 08:45:38 %S A147537 2,28,248,2032,16352,131008,1048448,8388352,67108352,536869888, %T A147537 4294965248,34359734272,274877898752,2199023239168,17592186011648, %U A147537 140737488289792,1125899906711552,9007199254478848,72057594037403648,576460752302374912,4611686018425290752 %N A147537 Numbers whose binary representation is the concatenation of 2n-1 digits 1 and n digits 0. %C A147537 a(n) is the number whose binary representation is A138118(n). %H A147537 G. C. Greubel, <a href="/A147537/b147537.txt">Table of n, a(n) for n = 1..1000</a> %H A147537 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-16). %F A147537 From _Colin Barker_, Nov 04 2012: (Start) %F A147537 a(n) = 2^(n-1)*(4^n - 2) = 2*A147590(n). %F A147537 a(n) = 10*a(n-1) - 16*a(n-2). %F A147537 G.f.: 2*x*(1+4*x)/((1-2*x)*(1-8*x)). (End) %p A147537 seq(2^n*(2^(2*n-1)-1), n = 1..20); # _G. C. Greubel_, Jan 12 2020 %t A147537 Table[FromDigits[Join[Table[1, {2n - 1}], Table[0, {n}]], 2], {n, 1, 20}] (* _Stefan Steinerberger_, Nov 11 2008 *) %o A147537 (PARI) vector(20, n, 2^n*(2^(2*n-1)-1)) \\ _G. C. Greubel_, Jan 12 2020 %o A147537 (Magma) [2^n*(2^(2*n-1)-1): n in [1..20]] // _G. C. Greubel_, Jan 12 2020 %o A147537 (Sage) [2^n*(2^(2*n-1)-1) for n in (1..20)] # _G. C. Greubel_, Jan 12 2020 %o A147537 (GAP) List([1..20], n-> 2^n*(2^(2*n-1)-1)); # _G. C. Greubel_, Jan 12 2020 %o A147537 (Python) %o A147537 def a(n): return ((1 << (2*n-1)) - 1) << n %o A147537 print([a(n) for n in range(1, 22)]) # _Michael S. Branicky_, Feb 28 2021 %Y A147537 Cf. A138118. %K A147537 base,easy,nonn %O A147537 1,1 %A A147537 _Omar E. Pol_, Nov 06 2008