cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147541 Result of using the primes as coefficients in an infinite polynomial series in x and then expressing this series as (1+x)(1+a(1)*x)(1+a(2)*x^2) ... .

This page as a plain text file.
%I A147541 #6 Sep 05 2014 20:52:12
%S A147541 1,2,1,3,2,-4,2,5,4,-6,4,4,10,-36,18,45,34,-72,64,-24,124,-358,258,
%T A147541 170,458,-1260,916,148,1888,-4296,3690,887,7272,-17616,14718,-5096,
%U A147541 29610,-67164,58722,-26036,119602,-244496,242256,-104754,487352,-1029384
%N A147541 Result of using the primes as coefficients in an infinite polynomial series in x and then expressing this series as (1+x)(1+a(1)*x)(1+a(2)*x^2) ... .
%C A147541 This is the PPE (power product expansion) of A036467. - _R. J. Mathar_, Feb 01 2010
%H A147541 H. Gingold, <a href="http://www.ams.org/mathscinet-getitem?mr=1068511">A note on reduction of operations via power product approximations</a>, Utilitas Math. 37 (1990), 79-89. [From _R. J. Mathar_, Nov 10 2008]
%H A147541 H. Gingold and A. Knopfmacher, <a href="http://www.ams.org/mathscinet-getitem?mr=1370515">Analytic properties of power product expansions</a>, Canad. J. Math. 47 (1995), 1219-1239. [From _R. J. Mathar_, Nov 10 2008]
%H A147541 H. Gingold, A. Knopfmacher and D. Lubinsky, <a href="http://www.ams.org/mathscinet-getitem?mr=1245748">The zero distribution of the partial products of power product expansions</a>, Analysis 13 (1993), 133-157. [From _R. J. Mathar_, Nov 10 2008]
%e A147541 From the primes, construct the series 1+2x+3x^2+5x^3+7x^4+... Divide this by (1+x) to get the quotient (1+a(1)x+...), which here gives a(1)=1. Then divide this quotient by (1+a(1)x), i.e. here (1+x), to get (1+a(2)x^2+...), giving a(2)=2.
%p A147541 From _R. J. Mathar_, Feb 01 2010: (Start)
%p A147541 # Partition n into a set of distinct positive integers, the maximum one
%p A147541 # being m.
%p A147541 # Example: partitionsQ(7,5) returns [[2,5],[3,4],[1,2,4]] ;
%p A147541 # Richard J. Mathar, 2008-11-10
%p A147541 partitionsQ := proc(n,m)
%p A147541 local p,t,rec,q;
%p A147541 p := [] ;
%p A147541 # take 't' of the n and recursively determine the partitions of
%p A147541 # what has been left over.
%p A147541 for t from min(m,n) to 1 by -1 do
%p A147541 # Since we are only considering partitions into distinct parts,
%p A147541 # the triangular numbers set a lower bound on the t.
%p A147541 if t*(t+1)/2 >= n then
%p A147541 rec := partitionsQ(n-t,t-1) ;
%p A147541 if nops(rec) = 0 then
%p A147541 p := [op(p),[t]] ;
%p A147541 else
%p A147541 for q in rec do
%p A147541 p := [op(p),[op(q),t]] ;
%p A147541 end do:
%p A147541 end if;
%p A147541 end if;
%p A147541 end do:
%p A147541 RETURN(p) ;
%p A147541 end proc:
%p A147541 # Power product expansion of L.
%p A147541 # L is a list starting with 1, which is considered L[0].
%p A147541 # Returns the list [a(1),a(2),..] such that
%p A147541 # product_(i=1,2,..) (1+a(i)x^i) = sum_(j=0,1,2,...) L[j]x^j.
%p A147541 # Richard J. Mathar, 2008-11-10
%p A147541 ppe := proc(L)
%p A147541 local pro,i,par,swithi,snoti,m,p,k ;
%p A147541 pro := [] ;
%p A147541 for i from 1 to nops(L)-1 do
%p A147541 par := partitionsQ(i,i) ;
%p A147541 swithi := 0 ;
%p A147541 snoti := 0 ;
%p A147541 for p in par do
%p A147541 if i in p then
%p A147541 m := 1 ;
%p A147541 for k from 1 to nops(p)-1 do
%p A147541 m := m*op(op(k,p),pro) ;
%p A147541 end do;
%p A147541 swithi := swithi+m ;
%p A147541 else
%p A147541 snoti := snoti+mul( op(k,pro),k=p) ;
%p A147541 end if;
%p A147541 end do:
%p A147541 pro := [op(pro), (op(i+1,L)-snoti)/swithi] ;
%p A147541 end do:
%p A147541 RETURN(pro) ;
%p A147541 end proc:
%p A147541 read("transforms") ;
%p A147541 A147541 := proc(nmax)
%p A147541 local L,L1,L2 ;
%p A147541 L := [1,seq(ithprime(n),n=1..nmax)] ;
%p A147541 L1 := [seq((-1)^n,n=0..nmax+10)] ;
%p A147541 A036467 := CONV(L,L1) ;
%p A147541 ppe(A036467) ;
%p A147541 end:
%p A147541 A147541(47) ;
%p A147541 (End)
%Y A147541 Cf. A000040, A147542.
%K A147541 sign
%O A147541 1,2
%A A147541 _Neil Fernandez_, Nov 06 2008
%E A147541 Extended by _R. J. Mathar_, Feb 01 2010