This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147572 #21 Sep 18 2024 05:53:48 %S A147572 2310,4620,6930,9240,11550,13860,16170,18480,20790,23100,25410,27720, %T A147572 32340,34650,36960,41580,46200,48510,50820,55440,57750,62370,64680, %U A147572 69300,73920,76230,80850,83160,92400,97020,101640,103950,110880,113190,115500,124740,127050 %N A147572 Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}. %C A147572 Successive numbers k such that EulerPhi(x)/x = m: %C A147572 ( Family of sequences for successive n primes ) %C A147572 m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079 %C A147572 m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845 %C A147572 m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207 %C A147572 m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571 %C A147572 m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572 %C A147572 m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573 %C A147572 m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574 %C A147572 m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575 %H A147572 Amiram Eldar, <a href="/A147572/b147572.txt">Table of n, a(n) for n = 1..10000</a> %F A147572 a(n) = 2310 * A051038(n). - _Amiram Eldar_, Mar 10 2020 %F A147572 Sum_{n>=1} 1/a(n) = 1/480. - _Amiram Eldar_, Nov 12 2020 %t A147572 a = {}; Do[If[EulerPhi[x]/x == 16/77, AppendTo[a, x]], {x, 1, 100000}]; a %t A147572 Select[Range[130000],FactorInteger[#][[All,1]]=={2,3,5,7,11}&] (* _Harvey P. Dale_, Oct 04 2020 *) %o A147572 (Python) %o A147572 from sympy import integer_log, prevprime %o A147572 def A147572(n): %o A147572 def bisection(f,kmin=0,kmax=1): %o A147572 while f(kmax) > kmax: kmax <<= 1 %o A147572 while kmax-kmin > 1: %o A147572 kmid = kmax+kmin>>1 %o A147572 if f(kmid) <= kmid: %o A147572 kmax = kmid %o A147572 else: %o A147572 kmin = kmid %o A147572 return kmax %o A147572 def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) %o A147572 def f(x): return n+x-g(x,11) %o A147572 return 2310*bisection(f,n,n) # _Chai Wah Wu_, Sep 16 2024 %Y A147572 Cf. A051038, A060735, A143207, A147571-A147575, A147576-A147580. %K A147572 nonn %O A147572 1,1 %A A147572 _Artur Jasinski_, Nov 07 2008 %E A147572 More terms from _Amiram Eldar_, Mar 10 2020