cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147572 Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}.

This page as a plain text file.
%I A147572 #21 Sep 18 2024 05:53:48
%S A147572 2310,4620,6930,9240,11550,13860,16170,18480,20790,23100,25410,27720,
%T A147572 32340,34650,36960,41580,46200,48510,50820,55440,57750,62370,64680,
%U A147572 69300,73920,76230,80850,83160,92400,97020,101640,103950,110880,113190,115500,124740,127050
%N A147572 Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}.
%C A147572 Successive numbers k such that EulerPhi(x)/x = m:
%C A147572 ( Family of sequences for successive n primes )
%C A147572 m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
%C A147572 m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
%C A147572 m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
%C A147572 m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
%C A147572 m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
%C A147572 m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
%C A147572 m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
%C A147572 m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575
%H A147572 Amiram Eldar, <a href="/A147572/b147572.txt">Table of n, a(n) for n = 1..10000</a>
%F A147572 a(n) = 2310 * A051038(n). - _Amiram Eldar_, Mar 10 2020
%F A147572 Sum_{n>=1} 1/a(n) = 1/480. - _Amiram Eldar_, Nov 12 2020
%t A147572 a = {}; Do[If[EulerPhi[x]/x == 16/77, AppendTo[a, x]], {x, 1, 100000}]; a
%t A147572 Select[Range[130000],FactorInteger[#][[All,1]]=={2,3,5,7,11}&] (* _Harvey P. Dale_, Oct 04 2020 *)
%o A147572 (Python)
%o A147572 from sympy import integer_log, prevprime
%o A147572 def A147572(n):
%o A147572     def bisection(f,kmin=0,kmax=1):
%o A147572         while f(kmax) > kmax: kmax <<= 1
%o A147572         while kmax-kmin > 1:
%o A147572             kmid = kmax+kmin>>1
%o A147572             if f(kmid) <= kmid:
%o A147572                 kmax = kmid
%o A147572             else:
%o A147572                 kmin = kmid
%o A147572         return kmax
%o A147572     def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
%o A147572     def f(x): return n+x-g(x,11)
%o A147572     return 2310*bisection(f,n,n) # _Chai Wah Wu_, Sep 16 2024
%Y A147572 Cf. A051038, A060735, A143207, A147571-A147575, A147576-A147580.
%K A147572 nonn
%O A147572 1,1
%A A147572 _Artur Jasinski_, Nov 07 2008
%E A147572 More terms from _Amiram Eldar_, Mar 10 2020