This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147577 #16 Oct 22 2024 20:17:07 %S A147577 1155,3465,5775,8085,10395,12705,17325,24255,28875,31185,38115,40425, %T A147577 51975,56595,63525,72765,86625,88935,93555,114345,121275,139755, %U A147577 144375,155925,169785,190575,202125,218295,259875,266805,280665,282975,317625 %N A147577 Numbers with exactly 4 distinct odd prime divisors {3,5,7,11}. %C A147577 Numbers k such that phi(k)/k = m %C A147577 ( Family of sequences for successive n odd primes ) %C A147577 m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244 %C A147577 m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849 %C A147577 m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576 %C A147577 m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577 %C A147577 m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578 %C A147577 m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579 %C A147577 m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580 %C A147577 m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581 %H A147577 Amiram Eldar, <a href="/A147577/b147577.txt">Table of n, a(n) for n = 1..10000</a> %F A147577 Sum_{n>=1} 1/a(n) = 1/480. - _Amiram Eldar_, Dec 22 2020 %t A147577 a = {}; Do[If[EulerPhi[x]/x == 32/77, AppendTo[a, x]], {x, 1, 1000000}]; a %t A147577 Select[Range[350000],EulerPhi[#]/#==32/77&] (* _Harvey P. Dale_, Mar 25 2016 *) %o A147577 (Python) %o A147577 from sympy import integer_log %o A147577 def A147577(n): %o A147577 def bisection(f,kmin=0,kmax=1): %o A147577 while f(kmax) > kmax: kmax <<= 1 %o A147577 while kmax-kmin > 1: %o A147577 kmid = kmax+kmin>>1 %o A147577 if f(kmid) <= kmid: %o A147577 kmax = kmid %o A147577 else: %o A147577 kmin = kmid %o A147577 return kmax %o A147577 def f(x): %o A147577 c = n+x %o A147577 for i11 in range(integer_log(x,11)[0]+1): %o A147577 for i7 in range(integer_log(x11:=x//11**i11,7)[0]+1): %o A147577 for i5 in range(integer_log(x7:=x11//7**i7,5)[0]+1): %o A147577 c -= integer_log(x7//5**i5,3)[0]+1 %o A147577 return c %o A147577 return 1155*bisection(f,n,n) # _Chai Wah Wu_, Oct 22 2024 %Y A147577 Cf. A060735, A143207, A147571-A147575, A147576-A147580. %K A147577 nonn %O A147577 1,1 %A A147577 _Artur Jasinski_, Nov 07 2008