This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147581 #16 Oct 23 2024 00:43:02 %S A147581 111546435,334639305,557732175,780825045,1003917915,1227010785, %T A147581 1450103655,1673196525,1896289395,2119382265,2342475135,2565568005, %U A147581 2788660875,3011753745,3681032355,3904125225,4350310965,5019589575,5465775315,5688868185,6135053925,6358146795 %N A147581 Numbers with exactly 8 distinct odd prime divisors {3,5,7,11,13,17,19,23}. %C A147581 Numbers k such that phi(k)/k = m %C A147581 ( Family of sequences for successive n odd primes ) %C A147581 m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244 %C A147581 m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849 %C A147581 m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576 %C A147581 m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577 %C A147581 m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578 %C A147581 m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579 %C A147581 m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580 %C A147581 m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581 %H A147581 Amiram Eldar, <a href="/A147581/b147581.txt">Table of n, a(n) for n = 1..10000</a> %F A147581 Sum_{n>=1} 1/a(n) = 1/36495360. - _Amiram Eldar_, Dec 22 2020 %t A147581 a = {}; Do[If[EulerPhi[111546435 x] == 36495360 x, AppendTo[a, 111546435 x]], {x, 1, 100}]; a %o A147581 (Python) %o A147581 from sympy import integer_log %o A147581 def A147581(n): %o A147581 def bisection(f,kmin=0,kmax=1): %o A147581 while f(kmax) > kmax: kmax <<= 1 %o A147581 while kmax-kmin > 1: %o A147581 kmid = kmax+kmin>>1 %o A147581 if f(kmid) <= kmid: %o A147581 kmax = kmid %o A147581 else: %o A147581 kmin = kmid %o A147581 return kmax %o A147581 def f(x): %o A147581 c = n+x %o A147581 for i23 in range(integer_log(x,23)[0]+1): %o A147581 for i19 in range(integer_log(x23:=x//23**i23,19)[0]+1): %o A147581 for i17 in range(integer_log(x19:=x23//19**i19,17)[0]+1): %o A147581 for i13 in range(integer_log(x17:=x19//17**i17,13)[0]+1): %o A147581 for i11 in range(integer_log(x13:=x17//13**i13,11)[0]+1): %o A147581 for i7 in range(integer_log(x11:=x13//11**i11,7)[0]+1): %o A147581 for i5 in range(integer_log(x7:=x11//7**i7,5)[0]+1): %o A147581 c -= integer_log(x7//5**i5,3)[0]+1 %o A147581 return c %o A147581 return 111546435*bisection(f,n,n) # _Chai Wah Wu_, Oct 22 2024 %Y A147581 Cf. A060735, A143207, A147571-A147575, A147576-A147580. %K A147581 nonn %O A147581 1,1 %A A147581 _Artur Jasinski_, Nov 07 2008 %E A147581 More terms from _Amiram Eldar_, Mar 11 2020