cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147582 First differences of A147562.

Original entry on oeis.org

1, 4, 4, 12, 4, 12, 12, 36, 4, 12, 12, 36, 12, 36, 36, 108, 4, 12, 12, 36, 12, 36, 36, 108, 12, 36, 36, 108, 36, 108, 108, 324, 4, 12, 12, 36, 12, 36, 36, 108, 12, 36, 36, 108, 36, 108, 108, 324, 12, 36, 36, 108, 36, 108, 108, 324, 36, 108, 108, 324, 108, 324, 324, 972, 4
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2009

Keywords

Comments

Bisection of A323651. - Omar E. Pol, Mar 04 2019

Examples

			From _Omar E. Pol_, Jun 14 2009: (Start)
When written as a triangle:
.1;
.4;
.4,12;
.4,12,12,36;
.4,12,12,36,12,36,36,108;
.4,12,12,36,12,36,36,108,12,36,36,108,36,108,108,324;
.4,12,12,36,12,36,36,108,12,36,36,108,36,108,108,324,12,36,36,108,36,108,...
The rows converge to A161411. (End)
		

References

  • D. Singmaster, On the cellular automaton of Ulam and Warburton, M500 Magazine of the Open University, #195 (December 2003), pp. 2-7.
  • S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.

Crossrefs

Cf. A147562, A147610 (the sequence divided by 4), A048881, A000120.
Cf. A048883, A139251, A160121, A162349. [Omar E. Pol, Nov 02 2009]
Cf. A323651.

Programs

  • Maple
    A000120 := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120; A147582 := n-> if n <= 1 then n else 4*3^(wt(n-1)-1); fi; [seq(A147582(n),n=0..1000)]; # N. J. A. Sloane, Apr 07 2010
  • Mathematica
    s = Plus @@ Flatten@ # & /@ CellularAutomaton[{686, {2, {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}}, {1, 1}}, {{{1}}, 0}, 200]; f[n_] = If[n == 0, 1, s[[n + 1]] - s[[n]]]; Array[f, 120, 0] (* Michael De Vlieger, Apr 09 2015, after Nadia Heninger and N. J. A. Sloane at A147562 *)

Formula

a(1) = 1; for n > 1, a(n) = 4*3^(wt(n-1)-1) where wt() = A000120(). - R. J. Mathar, Apr 30 2009
This formula is (essentially) given by Singmaster. - N. J. A. Sloane, Aug 06 2009
G.f.: x + 4*x*(Product_{k >= 0} (1 + 3*x^(2^k)) - 1)/3. - N. J. A. Sloane, Jun 10 2009

Extensions

Extended by R. J. Mathar, Apr 30 2009