This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147583 #9 Oct 10 2013 16:28:22 %S A147583 1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,6,7,7,7,7, %T A147583 7,8,9,9,9,9,9,10,11,11,11,11,11,12,13,13,13,13,13,14,15,15,15,15,15, %U A147583 16,17,18,18,18,18,19,20,21,21,21,21,22,23,24,24,24,24,25,26,27,27,27,27 %N A147583 Number of partitions of n into distinct parts such that 5*u<=v for all pairs (u,v) of parts with u<v. %C A147583 From _Edward Early_, Jan 10 2009: (Start) %C A147583 Also the dimension of the n-th degree part of the mod 5 Steenrod algebra. %C A147583 Also the number of partitions into parts (5^j-1)/4=1+5+5^2+...+5^(j-1) for j>=1. (End) %H A147583 Reinhard Zumkeller, <a href="/A147583/b147583.txt">Table of n, a(n) for n = 1..1000</a> %e A147583 a(29) = #{29,28+1,27+2,26+3,25+4} = 5; %e A147583 a(30) = #{30,29+1,28+2,27+3,26+4,25+5} = 6; %e A147583 a(31) = #{31,30+1,29+2,28+3,27+4,26+5,25+5+1} = 7. %o A147583 (Haskell) %o A147583 a147583 = p [1..] where %o A147583 p _ 0 = 1 %o A147583 p (k:ks) m = if m < k then 0 else p [5 * k ..] (m - k) + p ks m %o A147583 -- _Reinhard Zumkeller_, Oct 10 2013 %Y A147583 Cf. A000041, A000009, A000929, A132011. %K A147583 nonn %O A147583 1,6 %A A147583 _Reinhard Zumkeller_, following a suggestion of Clark Hanley (clark.hanley(AT)gmx.com), Nov 08 2008