This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147598 #8 Oct 25 2022 20:06:50 %S A147598 1,1,3,2,4,3,6,9,14,23,29,45,57,88,123,184,267,382,556,787,1149,1643, %T A147598 2392,3444,4978,7184,10348,14956,21550,31152,44924,64881,93611,135101, %U A147598 195000,281382,406201,586164,846121,1221064,1762399,2543555,3671003 %N A147598 Expansion of g.f. 1/((1-x^2+x^3+x^4-x^5)*(1-x-x^2+x^3-x^5)). %H A147598 G. C. Greubel, <a href="/A147598/b147598.txt">Table of n, a(n) for n = 0..1000</a> %H A147598 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-3,-1,5,-1,-3,2,1,-1). %F A147598 G.f.: -1/(x^5*f(x)*f(1/x)), where f(x) = -1 +x^2 -x^3 -x^4 +x^5. %F A147598 G.f.: 1/((x^5-x^4-x^3+x^2-1)*(x^5-x^3+x^2+x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009 %t A147598 f[x_]= x^5 -x^4 -x^3 +x^2 -1; %t A147598 CoefficientList[Series[-1/(x^5*f[x]*f[1/x]), {x,0,50}],x] %o A147598 (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x^2+x^3+x^4-x^5)*(1-x-x^2+x^3-x^5)) )); // _G. C. Greubel_, Oct 25 2022 %o A147598 (SageMath) %o A147598 def A147598_list(prec): %o A147598 P.<x> = PowerSeriesRing(ZZ, prec) %o A147598 return P( 1/((1-x^2+x^3+x^4-x^5)*(1-x-x^2+x^3-x^5)) ).list() %o A147598 A147598_list(50) # _G. C. Greubel_, Oct 25 2022 %Y A147598 Cf. A147605, A147606, A147607, A147617, A147620. %K A147598 nonn,easy,less %O A147598 0,3 %A A147598 _Roger L. Bagula_, Nov 08 2008 %E A147598 Better name (using g.f.) from _Joerg Arndt_, Apr 06 2018