This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147625 #30 Dec 20 2022 03:48:37 %S A147625 1,5,65,1365,39585,1464645,65909025,3493178325,213083877825, %T A147625 14702787569925,1132114642884225,96229744645159125, %U A147625 8949366251999798625,903885991451979661125,98523573068265783062625,11527258048987096618327125,1440907256123387077290890625 %N A147625 Octo-factorial numbers (4). %H A147625 G. C. Greubel, <a href="/A147625/b147625.txt">Table of n, a(n) for n = 1..330</a> %F A147625 a(n+1) = Sum_{k=0..n} A132393(n,k)*5^k*8^(n-k). - _Philippe Deléham_, Nov 09 2008 %F A147625 a(n) = (-3)^n*Sum_{k=0..n} (8/3)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - _Mircea Merca_, May 03 2012 %F A147625 a(n) - (8*n-11)*a(n-1) = 0. - _R. J. Mathar_, Sep 04 2016 %F A147625 From _Benedict W. J. Irwin_, Sep 30 2016: (Start) %F A147625 a(n) = Product_{k=0..n-1} (8*k+5). %F A147625 a(n) = 8^n*Gamma(5/8 + n)/Gamma(5/8). %F A147625 E.g.f: 1/(1 - 8*x)^(5/8). (End) %F A147625 a(n)/n! ~ 8^n/(Gamma(5/8)*n^(3/8)). - _Vaclav Kotesovec_, Oct 04 2016 %F A147625 Sum_{n>=1} 1/a(n) = 1 + (1/2)*(e/2)^(1/8)*(Gamma(5/8) - Gamma(5/8, 1/8)). - _Amiram Eldar_, Dec 20 2022 %p A147625 seq(8^(n-1)*pochhammer(5/8, n-1), n = 1..20); # _G. C. Greubel_, Dec 03 2019 %t A147625 Table[Product[(8k+5), {k, 0, n-1}], {n, 0, 20}] (* _Benedict W. J. Irwin_, Sep 30 2016 *) %o A147625 (PARI) vector(20, n, prod(j=0,n-2, 8*j+5) ) \\ _G. C. Greubel_, Dec 03 2019 %o A147625 (Magma) [Round(8^(n-1)*Gamma(n-1 +5/8)/Gamma(5/8)): n in [1..20]]; // _G. C. Greubel_, Dec 03 2019 %o A147625 (Sage) [8^(n-1)*rising_factorial(5/8, n-1) for n in (1..20)] # _G. C. Greubel_, Dec 03 2019 %Y A147625 Cf. A048994, A132393. %K A147625 nonn,easy %O A147625 1,2 %A A147625 _Vladimir Joseph Stephan Orlovsky_, Nov 08 2008