cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147721 a(n) = C(2,n) DELTA C(0,n).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 17, 7, 1, 41, 72, 40, 10, 1, 153, 301, 208, 72, 13, 1, 571, 1244, 1021, 446, 113, 16, 1, 2131, 5093, 4819, 2525, 813, 163, 19, 1, 7953, 20688, 22104, 13452, 5218, 1336, 222, 22, 1, 29681, 83481, 99192, 68568, 30986, 9586, 2042, 290, 25, 1
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle T equal to [1,2,1,0,0,0,...] DELTA [1,0,0,0,...] for Deléham DELTA as in A084938.
T = A147720*A007318. Row sums are A147722.

Examples

			Triangle begins
    1;
    1,   1;
    3,   4,   1;
   11,  17,   7,   1;
   41,  72,  40,  10,   1;
  153, 301, 208,  72,  13,   1;
		

Crossrefs

Programs

  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 3*x)/(1 - 4*x + (1 + y)*x^2 - y*x), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017, after Philippe Deléham *)

Formula

Riordan array ((1-3x)/(1-4x+x^2), x(1-x)/(1-4x+x^2)).
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), n > 1. - Philippe Deléham, Feb 13 2012
G.f.: (1-3*x)/(1-4*x+(1+y)*x^2-y*x). - Philippe Deléham, Feb 13 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001835(n), A147722(n), A084120(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Feb 13 2012