This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147757 #23 Aug 02 2017 10:09:41 %S A147757 1,11,101,1001,10101,101101,1011101,10111101,101111101,1011111101, %T A147757 10111111101,101111111101,1011111111101,10111111111101, %U A147757 101111111111101,1011111111111101,10111111111111101,101111111111111101 %N A147757 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 0 and infinite digits 1. %C A147757 a(n) is also A147758(n) written in base 2. %C A147757 a(A016789(n)) is divisible by 3 for n > 0. - _Altug Alkan_, Dec 06 2015 %H A147757 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10). %F A147757 G.f.: x+11*x^2+101*x^3-91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ). - _R. J. Mathar_, Aug 24 2011 %F A147757 a(n) = 11*a(n-1) - 10*a(n-2) for n>2. _Wesley Ivan Hurt_, Dec 06 2015 %e A147757 n .... Successive digits of a(n) %e A147757 1 ............. ( 1 ) %e A147757 2 ............ ( 1 1 ) %e A147757 3 ........... ( 1 0 1 ) %e A147757 4 .......... ( 1 0 0 1 ) %e A147757 5 ......... ( 1 0 1 0 1 ) %e A147757 6 ........ ( 1 0 1 1 0 1 ) %e A147757 7 ....... ( 1 0 1 1 1 0 1 ) %e A147757 8 ...... ( 1 0 1 1 1 1 0 1 ) %e A147757 9 ..... ( 1 0 1 1 1 1 1 0 1 ) %e A147757 10 ... ( 1 0 1 1 1 1 1 1 0 1 ) %t A147757 f[n_] := Block[{w = {1, 0}}, Which[n == 1, w = {1}, n == 2, w = {1, 1}, n == 3, AppendTo[w, 1], n >= 4, w = Join[w, Table[1, {n - 4}], Reverse@ w]]; FromDigits@ w]; Array[f, 19] (* _Michael De Vlieger_, Dec 05 2015 *) %t A147757 LinearRecurrence[{11,-10},{1,11,101,1001,10101},20] (* _Harvey P. Dale_, Aug 02 2017 *) %o A147757 (PARI) Vec( x+11*x^2+101*x^3 -91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ) + O(x^30)) \\ _Michel Marcus_, Dec 05 2015 %Y A147757 Cf. A000533, A016789, A135577, A138120, A138144, A138145, A138146, A138721, A138826, A147758. %Y A147757 Cf. A144564 (a bisection). %K A147757 base,easy,nonn %O A147757 1,2 %A A147757 _Omar E. Pol_, Nov 11 2008