This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147780 #9 Nov 28 2023 08:39:30 %S A147780 1,4,54,8422,464862602,7134230598346156958, %T A147780 13246386641663595526163132113862494582602, %U A147780 643152870463337226096381089442329605982736165294243832777767297119502149008481206286 %N A147780 Number of nodes at n-th level in tree in which top node is 1; each node k has children labeled 1, 2, ..., (k+1)^2 at next level. %C A147780 See the reference in A058311 for a better way to compute this! %p A147780 M:=3; %p A147780 L[0]:=[1]; a[0]:=1; %p A147780 for n from 1 to M do %p A147780 L[n]:=[]; %p A147780 t1:=L[n-1]; %p A147780 tc:=nops(t1); %p A147780 for i from 1 to tc do %p A147780 t2:=t1[i]; %p A147780 for j from 1 to (t2+1)^2 do %p A147780 L[n]:=[op(L[n]),j]; od: %p A147780 a[n]:=nops(L[n]); %p A147780 #lprint(n,L[n],a[n]); %p A147780 od: %p A147780 od: %p A147780 [seq(a[n],n=0..M)]; %p A147780 p := proc(n,k) option remember; local j ; if n = 1 then (k+1)^2; else sum( procname(n-1,j),j=1..(k+1)^2) ; fi; expand(%) ; end: A147780 := proc(n) if n = 0 then 1 ; else subs(k=1, p(n,k)) ; fi; end: for n from 0 do printf("%d,\n", A147780(n)) ; od: # _R. J. Mathar_, May 04 2009 %t A147780 p[n_, k_] := p[n, k] = If[n == 1, (k + 1)^2, Sum[p[n - 1, j], {j, 1, (k + 1)^2}]]; %t A147780 a[n_] := a[n] = If[n == 0, 1, p[n, 1]]; %t A147780 Table[Print[n, " ", a[n]]; a[n], {n, 0, 5}] (* _Jean-François Alcover_, Nov 28 2023, after _R. J. Mathar_ *) %Y A147780 A variant of A058311. Cf. A147794. %K A147780 nonn %O A147780 0,2 %A A147780 _N. J. A. Sloane_, May 03 2009 %E A147780 4 more terms from _R. J. Mathar_, May 04 2009