This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147784 #12 Dec 01 2018 10:14:30 %S A147784 1,0,0,1,1,0,2,1,2,3,2,2,7,3,4,9,9,6,15,11,15,21,19,19,39,27,32,51,51, %T A147784 45,78,67,82,107,104,108,172,143,165,226,232,226,328,306,356,441,446, %U A147784 470,655,601,677,857,891,908,1197,1169,1325,1582 %N A147784 Number of partitions of n into parts divisible by 3 or 4. %C A147784 Also number of partitions of n with no part and no difference between two parts equal to 1,2 or 5. %C A147784 Also number of partitions of n with no part appearing 1,2 or 5 times. %H A147784 Seiichi Manyama, <a href="/A147784/b147784.txt">Table of n, a(n) for n = 0..10000</a> %H A147784 A. E. Holroyd, <a href="http://arxiv.org/abs/0706.2282">Partition Identities and the Coin Exchange Problem</a>, arXiv:0706.2282 [math.CO], 2007. %H A147784 A. E. Holroyd, <a href="https://doi.org/10.1016/j.jcta.2007.12.003">Partition Identities and the Coin Exchange Problem</a>, J. Combin. Theory Ser. A, 115 (2008) 1096-1101. %F A147784 G.f.: Product_{k>=1} (1-x^(12k))/(1-x^(3k))/(1-x^(4k)). %F A147784 a(n) ~ exp(sqrt(n/3)*Pi)/(4*sqrt(6)*n). - _Vaclav Kotesovec_, Sep 23 2015 %t A147784 nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k))*(1 + x^(6*k))/(1 - x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 23 2015 *) %Y A147784 Cf. A007690, A147783, A147785, A147786, A147787. %K A147784 nonn %O A147784 0,7 %A A147784 Alexander E. Holroyd (holroyd at math.ubc.ca)