This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147794 #8 Feb 01 2024 15:00:00 %S A147794 1,2,8,120,40456,14354709112,10145806838546891496456, %T A147794 43814454551364119293851205505402899467594454136, %U A147794 12230705010706858303154182089533811056819321112988144670126813673854225371091425006635639297686024 %N A147794 Number of nodes at n-th level in tree in which top node is 1; each node k has children labeled 1, 2, ..., k*(k+1) at next level. %C A147794 See the reference in A058311 for a better way to compute this! %p A147794 M:=4; %p A147794 L[0]:=[1]; a[0]:=1; %p A147794 for n from 1 to M do %p A147794 L[n]:=[]; %p A147794 t1:=L[n-1]; %p A147794 tc:=nops(t1); %p A147794 for i from 1 to tc do %p A147794 t2:=t1[i]; %p A147794 for j from 1 to t2*(t2+1) do %p A147794 L[n]:=[op(L[n]),j]; od: %p A147794 a[n]:=nops(L[n]); %p A147794 #lprint(n,L[n],a[n]); %p A147794 od: %p A147794 od: %p A147794 [seq(a[n],n=0..M)]; %p A147794 p := proc(n,k) option remember; local j ; if n = 1 then k*(k+1); else sum( procname(n-1,j),j=1..k*(k+1)) ; fi; expand(%) ; end: A147794 := proc(n) if n = 0 then 1 ; else subs(k=1, p(n,k)) ; fi; end: for n from 0 do printf("%d,\n", A147794(n)) ; od: # _R. J. Mathar_, May 04 2009 %t A147794 p[n_, k_] := p[n, k] = If[n == 1, k (k + 1), Sum[p[n - 1, j], {j, 1, k (k + 1)}]]; %t A147794 a[n_] := If[n == 0, 1, p[n, 1]]; %t A147794 Table[Print[n, " ", a[n]]; a[n], {n, 0, 7}] (* _Jean-François Alcover_, Feb 01 2024, after _R. J. Mathar_ *) %Y A147794 A variant of A058311. Cf. A147780. %K A147794 nonn %O A147794 0,2 %A A147794 _N. J. A. Sloane_, May 03 2009 %E A147794 More terms from _R. J. Mathar_, May 04 2009