A147811 Alexandrian integers: numbers of the form n=pqr such that 1/n = 1/p - 1/q - 1/r for some integers p,q,r.
6, 42, 120, 156, 420, 630, 930, 1428, 1806, 2016, 2184, 3192, 4950, 5256, 8190, 8364, 8970, 10296, 10998, 12210, 17556, 19110, 21114, 23994, 24492, 28050, 32640, 33306, 34362, 37506, 39270, 44310, 52326, 57684, 57840, 70686, 74256, 79800, 83076
Offset: 1
Keywords
Examples
630 is an Alexandrian integer since 630 = 5(-7)(-18) and 1/630 = 1/5 - 1/7 - 1/18.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Project Euler, Problem 221: Alexandrian integers
Programs
-
Maple
N:= 10^5: # to get all terms <= N A:= select(`<=`,{seq(seq(p*(p+d)*(p+(p^2+1)/d), d=numtheory:-divisors(p^2+1)),p=1..floor(N^(1/3)))},N): sort(convert(A,list)); # Robert Israel, Dec 16 2018
-
PARI
is_A147811(n) = { my(d=divisors(n), c=#d+1); n<42 && return(n==6); for( i=2, c-3, d[i+1]^2>d[c-i] && return; d[c-i]%d[i]==1 | next; for( j=i+1, c-i,d[j]^2>d[c-i] && next(2); d[c-i]\d[j]*(d[j]-d[i]) == d[j]*d[i]+1 && return(1))) }
Comments