cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147811 Alexandrian integers: numbers of the form n=pqr such that 1/n = 1/p - 1/q - 1/r for some integers p,q,r.

Original entry on oeis.org

6, 42, 120, 156, 420, 630, 930, 1428, 1806, 2016, 2184, 3192, 4950, 5256, 8190, 8364, 8970, 10296, 10998, 12210, 17556, 19110, 21114, 23994, 24492, 28050, 32640, 33306, 34362, 37506, 39270, 44310, 52326, 57684, 57840, 70686, 74256, 79800, 83076
Offset: 1

Views

Author

M. F. Hasler and Alexis Olson (AlexisOlson(AT)gmail.com), Dec 13 2008

Keywords

Comments

The numbers are of the form p(p+d)(p+(p^2+1)/d), where d runs over divisors of p^2+1 and p runs over all positive integers. See also A147807..A147810. - M. F. Hasler, Jan 07 2009

Examples

			630 is an Alexandrian integer since 630 = 5(-7)(-18) and 1/630 = 1/5 - 1/7 - 1/18.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # to get all terms <= N
    A:= select(`<=`,{seq(seq(p*(p+d)*(p+(p^2+1)/d), d=numtheory:-divisors(p^2+1)),p=1..floor(N^(1/3)))},N):
    sort(convert(A,list)); # Robert Israel, Dec 16 2018
  • PARI
    is_A147811(n) = { my(d=divisors(n), c=#d+1); n<42 && return(n==6); for( i=2, c-3, d[i+1]^2>d[c-i] && return; d[c-i]%d[i]==1 | next; for( j=i+1, c-i,d[j]^2>d[c-i] && next(2); d[c-i]\d[j]*(d[j]-d[i]) == d[j]*d[i]+1 && return(1))) }