This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147818 #24 Mar 15 2024 02:20:13 %S A147818 5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9, %T A147818 9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5, %U A147818 5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5,9,9,5,5 %N A147818 Period 4: repeat [5, 9, 9, 5]. %C A147818 Last digit of the number whose binary representation is the concatenation of n 1's, 2n-1 0's and n 1's. %C A147818 a(n) is the final digit of A147539(n). %H A147818 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1). %F A147818 a(n+1) = 7-2*cos(Pi*n/2)+2*sin(Pi*n/2). - _R. J. Mathar_, Oct 08 2011 %F A147818 a(n) = a(n-1)-a(n-2)+a(n-3) for n>3. G.f.: x*(5*x^2+4*x+5)/((1-x)*(x^2+1)). [_Colin Barker_, Nov 04 2012] %F A147818 a(n) = a(n-4) for n>4. - _Wesley Ivan Hurt_, Jul 09 2016 %p A147818 A010879 := proc(n) n mod 10; end: %p A147818 A147539 := proc(n) 2^n-1+2^(4*n-1)-2^(3*n-1); end: %p A147818 A147818 := proc(n) A010879(A147539(n)); end: # _R. J. Mathar_, Jan 22 2009 %p A147818 seq(op([5, 9, 9, 5]), n=1..40); # _Wesley Ivan Hurt_, Jul 09 2016 %t A147818 PadRight[{}, 100, {5, 9, 9, 5}] (* _Wesley Ivan Hurt_, Jul 09 2016 *) %o A147818 (Magma) &cat [[5, 9, 9, 5]^^30]; // _Wesley Ivan Hurt_, Jul 09 2016 %Y A147818 Cf. A138120, A147539. %K A147818 base,easy,nonn %O A147818 1,1 %A A147818 _Omar E. Pol_, Nov 14 2008, Jan 25 2009 %E A147818 More terms from _R. J. Mathar_, Jan 22 2009