This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147871 #22 Apr 14 2020 01:47:32 %S A147871 1,1,1,3,4,7,10,15,24,37,49,73,105,142,208,294,391,538,752,988,1359, %T A147871 1812,2410,3232,4270,5598,7454,9721,12639,16625,21445,27649,35793, %U A147871 46235,59141,76215,96975,123262,157671,199625,252591,319792,403262,507682 %N A147871 Expansion of Product_{k > 0} (1 + A147665(k)*x^k). %F A147871 a(n) = [x^n] Product_{k > 0} (1 + A147665(k)*x^k). %F A147871 a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A147665(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - _Petros Hadjicostas_, Apr 11 2020 %e A147871 From _Petros Hadjicostas_, Apr 11 2020: (Start) %e A147871 Let f(m) = A147665(m). Using the strict partitions of each n (see A000009), we get %e A147871 a(1) = f(1) = 1, %e A147871 a(2) = f(2) = 1, %e A147871 a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3, %e A147871 a(4) = f(4) + f(1)*f(3) = 2 + 1*2 = 4, %e A147871 a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*2 + 1*2 = 7, %e A147871 a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 3 + 1*3 + 1*2 + 1*1*2 = 10, %e A147871 a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 3 + 1*3 + 1*3 + 2*2 + 1*1*2 = 15. (End) %t A147871 (*A147665*) f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 1]] + If[Mod[ n, 3] == 0, f[f[n/3]], If[Mod[n, 3] == 1, f[f[(n - 1)/3]], f[n - f[(n - 2)/3]]]]; %t A147871 P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}]; %t A147871 Take[CoefficientList[P[x, 45], x], 45] (* Program simplified by _Petros Hadjicostas_, Apr 13 2020 *) %Y A147871 Cf. A000009, A004001, A147559, A147654, A147655, A147665, A147880. %K A147871 nonn %O A147871 0,4 %A A147871 _Roger L. Bagula_, Nov 16 2008 %E A147871 Various sections edited by _Petros Hadjicostas_, Apr 11 2020