This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A147878 #22 Jul 02 2025 16:02:02 %S A147878 1,2,5,11,23,46,86,156,273,463,766,1241,1969,3073,4723,7157,10711, %T A147878 15850,23206,33654,48373,68955,97544,137002,191125,264955,365127, %U A147878 500349,682018,924982,1248502,1677530,2244229,2989952,3967732,5245354,6909211 %N A147878 The number of degree sequences with degree sum 2n representable by a connected graph (with multiple edges allowed). %H A147878 Vaclav Kotesovec, <a href="/A147878/b147878.txt">Table of n, a(n) for n = 1..10000</a> %H A147878 O. J. Rodseth, J. A. Sellers and H. Tverberg, <a href="http://dx.doi.org/10.1016/j.ejc.2008.10.006">Enumeration of the Degree Sequences of Non-Separable Graphs and Connected Graphs</a>, European Journal of Combinatorics 30 (2009), 1301-1317. %H A147878 Gus Wiseman, <a href="/A147878/a147878.png">Connected multigraphs realizing each of the a(5) = 23 connected multigraphical graphical partitions of 10.</a> %F A147878 a(n) = p(2n) - p(n-1) - 2*Sum_{j=0..n-2} p(j). %F A147878 a(n) = A000041(2*n) - 2*A000070(n) + 2*A000041(n) + A000041(n-1). - _Vaclav Kotesovec_, Nov 05 2016 %F A147878 a(n) ~ exp(2*Pi*sqrt(n/3))/(8*sqrt(3)*n) * (1 - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) /sqrt(n)). - _Vaclav Kotesovec_, Nov 05 2016 %e A147878 From _Gus Wiseman_, Oct 26 2018: (Start) %e A147878 The a(1) = 1 through a(5) = 23 connected multigraphical partitions: %e A147878 (11) (22) (33) (44) (55) %e A147878 (211) (222) (332) (433) %e A147878 (321) (422) (442) %e A147878 (2211) (431) (532) %e A147878 (3111) (2222) (541) %e A147878 (3221) (3322) %e A147878 (3311) (3331) %e A147878 (4211) (4222) %e A147878 (22211) (4321) %e A147878 (32111) (4411) %e A147878 (41111) (5221) %e A147878 (5311) %e A147878 (22222) %e A147878 (32221) %e A147878 (33211) %e A147878 (42211) %e A147878 (43111) %e A147878 (52111) %e A147878 (222211) %e A147878 (322111) %e A147878 (331111) %e A147878 (421111) %e A147878 (511111) %e A147878 (End) %p A147878 with(combinat): seq(numbpart(2*m) - numbpart(m - 1) - 2*add(numbpart(j), j = 0 .. m-2), m=1..60); %o A147878 (PARI) a(n) = numbpart(2*n) - numbpart(n-1) - 2*sum(j=0, n-2, numbpart(j)); \\ _Michel Marcus_, Nov 04 2016 %Y A147878 Cf. A000070, A000569, A007717, A096373, A147877, A209816, A320911, A320921 (no multiedges), A320923. %K A147878 nonn %O A147878 1,2 %A A147878 _James Sellers_, Nov 16 2008 %E A147878 Offset corrected by _Michel Marcus_, Nov 04 2016