A147985 Coefficients of numerator polynomials S(n,x) associated with reciprocation.
1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 1, 0, -7, 0, 13, 0, -7, 0, 1, 1, 0, -15, 0, 83, 0, -220, 0, 303, 0, -220, 0, 83, 0, -15, 0, 1, 1, 0, -31, 0, 413, 0, -3141, 0, 15261, 0, -50187, 0, 115410, 0, -189036, 0, 222621, 0, -189036, 0, 115410, 0, -50187, 0, 15261, 0, -3141, 0, 413, 0
Offset: 1
Examples
S(1)=x S(2)=x^2-1=(x-1)(x+1) S(3)=x^4-3*x^2+1=(x^2+x-1)(x^2-x-1) S(4)=x^8-7*x^6+13*x^4-7*x^2+1=(x^4+x^3-3*x^2-x+1)(x^4-x^3-3*x^2+x+1), so that, as an array, sequence begins with 1 0 1 0 -1 1 0 -3 0 1 1 0 -7 0 13 0 -7 0 1
Links
- Peter J. C. Moses, Rows n = 1..13 of irregular triangle, flattened
- Clark Kimberling, Polynomials associated with reciprocation, Journal of Integer Sequences 12 (2009, Article 09.3.4) 1-11.
Programs
-
Mathematica
s[1] = x; t[1] = 1; s[n_] := s[n] = s[n-1]^2 - t[n-1]^2; t[n_] := t[n] = s[n-1]*t[n-1]; row[n_] := CoefficientList[s[n], x] // Reverse; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Apr 22 2013 *)
Formula
The basic idea is to iterate the reciprocation-difference mapping x/y -> x/y-y/x.
Let x be an indeterminate, S(1)=x, T(1)=1 and for n>1, define S(n)=S(n-1)^2-T(n-1)^2 and T(n)=S(n-1)*T(n-1), so that S(n)/T(n)=S(n-1)/T(n-1)-T(n-1)/S(n-1).
Comments