cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147985 Coefficients of numerator polynomials S(n,x) associated with reciprocation.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 1, 0, -7, 0, 13, 0, -7, 0, 1, 1, 0, -15, 0, 83, 0, -220, 0, 303, 0, -220, 0, 83, 0, -15, 0, 1, 1, 0, -31, 0, 413, 0, -3141, 0, 15261, 0, -50187, 0, 115410, 0, -189036, 0, 222621, 0, -189036, 0, 115410, 0, -50187, 0, 15261, 0, -3141, 0, 413, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 24 2008

Keywords

Comments

1. S(n)=U(n-1)V(n-1) where U(n-1)=S(n-1)+S(1)*S(2)*...*S(n-2) and V(n-1)=S(n-1)-S(1)*S(2)*...*S(n-2), for n>=2. If U(n) and V(n) are written as polynomials U(n,x) and V(n,x), then V(n,x)=U(n,-x). See A147989 for coefficients of U(n).
2. S(n)=S(n-1)^2+S(n-1)*S(n-2)^2-S(n-2)^4 for n>2. (The Gorskov-Wirsting polynomials also have this recurrence; see H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, 84, AMS, pp. 183-190.)
3. For n>0, the 2^(n-1) zeros of S(n) are real. If r is a zero of S(n), then -r and 1/r are zeros of S(n).
4. If r is a zero of S(n), then the numbers z satisfying r=z-1/z and r=z+1/z are zeros of S(n+1).
5. If n>2, then S(n,1)=1 and S(n,2)=A127814(n).
6. S(n,2^(1/2))=-1 for n>2 and S(n,2^(-1/2))=-2^(1-n) for n>1.

Examples

			S(1)=x
S(2)=x^2-1=(x-1)(x+1)
S(3)=x^4-3*x^2+1=(x^2+x-1)(x^2-x-1)
S(4)=x^8-7*x^6+13*x^4-7*x^2+1=(x^4+x^3-3*x^2-x+1)(x^4-x^3-3*x^2+x+1),
so that, as an array, sequence begins with
1 0
1 0 -1
1 0 -3 0 1
1 0 -7 0 13 0 -7 0 1
		

Crossrefs

Programs

  • Mathematica
    s[1] = x; t[1] = 1; s[n_] := s[n] = s[n-1]^2 - t[n-1]^2; t[n_] := t[n] = s[n-1]*t[n-1]; row[n_] := CoefficientList[s[n], x] // Reverse; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Apr 22 2013 *)

Formula

The basic idea is to iterate the reciprocation-difference mapping x/y -> x/y-y/x.
Let x be an indeterminate, S(1)=x, T(1)=1 and for n>1, define S(n)=S(n-1)^2-T(n-1)^2 and T(n)=S(n-1)*T(n-1), so that S(n)/T(n)=S(n-1)/T(n-1)-T(n-1)/S(n-1).