cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147986 Coefficients of denominator polynomials T(n,x) associated with reciprocation.

Original entry on oeis.org

1, 1, 0, 1, 0, -1, 0, 1, 0, -4, 0, 4, 0, -1, 0, 1, 0, -11, 0, 45, 0, -88, 0, 88, 0, -45, 0, 11, 0, -1, 0, 1, 0, -26, 0, 293, 0, -1896, 0, 7866, 0, -22122, 0, 43488, 0, -60753, 0, 60753, 0, -43488, 0, 22122, 0, -7866, 0, 1896, 0, -293, 0, 26, 0, -1, 0, 1, 0, -57, 0, 1512, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 24 2008

Keywords

Comments

T(n)=S(1)*S(2)*...*S(n-1). The degree of S(n) in x is m=2^(n-1), so that the degree of T(n) is m-1. Write the zeros of T(n) as r(1)

Examples

			T(1) = 1
T(2) = x
T(3) = x^3-x
T(4) = x^7-4*x^5+4*x^3-x
so that, as an array, the sequence begins with:
1
1 0
1 0 -1 0
1 0 -4 0 4 0 -1 0
		

Programs

  • Mathematica
    s[1] = x; t[1] = 1; s[n_] := s[n] = s[n-1]^2 - t[n-1]^2; t[n_] := t[n] = s[n-1]*t[n-1]; row[n_] := CoefficientList[t[n], x] // Reverse; Table[row[n], {n, 7}] // Flatten (* Jean-François Alcover, Apr 22 2013 *)

Formula

The basic idea is to iterate the reciprocation-difference mapping x/y -> x/y-y/x.
Let x be an indeterminate, S(1)=x, T(1)=1 and for n>1, define S(n)=S(n-1)^2-T(n-1)^2 and T(n)=S(n-1)*T(n-1), so that S(n)/T(n)=S(n-1)/T(n-1)-T(n-1)/S(n-1).