A147987 Coefficients of numerator polynomials P(n,x) associated with reciprocation.
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 7, 0, 13, 0, 7, 0, 1, 1, 0, 15, 0, 83, 0, 220, 0, 303, 0, 220, 0, 83, 0, 15, 0, 1, 1, 0, 31, 0, 413, 0, 3141, 0, 15261, 0, 50187, 0, 115410, 0, 189036, 0, 222621, 0, 189036, 0, 115410, 0, 50187, 0, 15261, 0, 3141, 0, 413, 0, 31, 0, 1, 1, 0, 63
Offset: 1
Examples
P(1) = x P(2) = x^2+1 P(3) = x^4+3*x^2+1 P(4) = x^8+7*x^6+13*x^4+7x^2+1 so that, as an array, the sequence begins with: 1 0 1 0 1 1 0 3 0 1 1 0 7 0 13 0 7 0 1
Links
- Clark Kimberling, Polynomials associated with reciprocation, Journal of Integer Sequences 12 (2009, Article 09.3.4) 1-11.
Programs
-
Mathematica
p[1] = x; q[1] = 1; p[n_] := p[n] = p[n-1]^2 + q[n-1]^2; q[n_] := q[n] = p[n-1]*q[n-1]; row[n_] := CoefficientList[p[n], x] // Reverse; Table[row[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Apr 22 2013 *)
Formula
The basic idea is to iterate the reciprocation-sum mapping x/y -> x/y+y/x.
Let x be an indeterminate, P(1)=x, Q(1)=1 and for n>1, define P(n)=P(n-1)^2+Q(n-1)^2 and Q(n)=P(n-1)*Q(n-1), so that P(n)/Q(n)=P(n-1)/Q(n-1)-Q(n-1)/P(n-1).
Comments