A147988 Coefficients of denominator polynomials Q(n,x) associated with reciprocation.
1, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 4, 0, 1, 0, 1, 0, 11, 0, 45, 0, 88, 0, 88, 0, 45, 0, 11, 0, 1, 0, 1, 0, 26, 0, 293, 0, 1896, 0, 7866, 0, 22122, 0, 43488, 0, 60753, 0, 60753, 0, 43488, 0, 22122, 0, 7866, 0, 1896, 0, 293, 0, 26, 0, 1, 0, 1, 0, 57, 0, 1512, 0, 24858, 0, 284578, 0
Offset: 1
Examples
Q(1) = 1 Q(2) = x Q(3) = x^3+x Q(4) = x^7+4*x^5+4*x^3+1 so that, as an array, the sequence begins with: 1 1 0 1 0 1 0 1 0 4 0 4 0 1
Links
- Clark Kimberling, Polynomials associated with reciprocation, Journal of Integer Sequences 12 (2009, Article 09.3.4) 1-11.
Formula
The basic idea is to iterate the reciprocation-sum mapping x/y -> x/y+y/x.
Let x be an indeterminate, P(1)=x, Q(1)=1 and for n>1, define P(n)=P(n-1)^2+Q(n-1)^2 and Q(n)=P(n-1)*Q(n-1), so that P(n)/Q(n)=P(n-1)/Q(n-1)-Q(n-1)/P(n-1).
Comments