cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147989 Coefficients of factor polynomials U(n,x) associated with reciprocation.

Original entry on oeis.org

1, 1, -1, 1, 1, -3, -1, 1, 1, 1, -7, -4, 13, 4, -7, -1, 1, 1, 1, -15, -11, 83, 45, -220, -88, 303, 88, -220, -45, 83, 11, -15, -1, 1, 1, 1, -31, -26, 413, 293, -3141, -1896, 15261, 7866, -50187, -22122, 115410, 43488, -189036, -60753, 222621, 60753, -189036
Offset: 1

Views

Author

Clark Kimberling, Nov 25 2008

Keywords

Comments

The zeros of U(n,x) and U(n,-x) are the zeros of S(n,x) at A147985.

Examples

			U(3) = x^2+x-1;
U(4) = x^4+x^3-3*x^2-x+1;
U(5) = x^8+x^7-7*x^6-4*x^5+13*x^4+4*x^3-7*x^2-x+1;
so that, as an array, the sequence begins with:
1 1 -1
1 1 -3 -1 1
1 1 -7 -4 13 4 -7 -1 1
		

Crossrefs

Programs

  • Maple
    U[3]:= x^2+x-1:
    U[4]:= x^4+x^3-3*x^2-x+1:
    for n from 5 to 10 do
      U[n]:= normal(U[n-1]*M(U[n-1]) + x*(x^2-1)*mul(U[i]*M(U[i]),i=3..n-2));
    od:
    seq(seq(coeff(U[m],x,j),j=degree(U[m])..0,-1),m=3..10); # Robert Israel, Jun 30 2015
  • Mathematica
    U[3, x_] = x^2 + x - 1;
    U[4, x_] = x^4 + x^3 - 3 x^2 - x + 1;
    U[n_, x_] := U[n, x] = U[n-1, x] U[n-1, -x] + x (x^2 - 1) Product[U[k, x] U[k, -x], {k, 3, n-2}];
    Table[CoefficientList[U[n, x], x] // Reverse, {n, 3, 7}] // Flatten (* Jean-François Alcover, Mar 25 2019 *)

Formula

For n>=5, U(n)=U(n,x)=U(n-1,x)*U(n-1,-x)+x*(x^2-1)*U(3,x)*U(3,-x)*U(4,x)*U(4,-x)*...*U(n-2,x)*U(n-2,-x), where U(3)=x^2+x-1, U(4)=x^4+x^3-3*x^2-x+1.