This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151285 #6 Jun 02 2025 01:10:06 %S A151285 1,2,6,20,70,257,967,3722,14548,57619,230612,931083,3787276,15502881, %T A151285 63810147,263909613,1096140669,4570019368,19117859437,80220313298, %U A151285 337542496835,1423849191982,6020011578673,25506250066482,108277897776181,460482597553895,1961598838029100,8369127049893122 %N A151285 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (-1, 1), (-1, 0), (0, 1), (1, 0)}. %H A151285 M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>. %H A151285 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>. %t A151285 aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}] %K A151285 nonn,walk %O A151285 0,2 %A A151285 _Manuel Kauers_, Nov 18 2008