This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151344 #9 Dec 27 2023 21:37:13 %S A151344 1,1,5,35,313,3253,37540,467990,6190709,85835624,1236484572, %T A151344 18384929389,280749914660,4386014526625,69882361534195, %U A151344 1132723613672240,18640032332057095,310881221313870479,5247411904749163561,89530524469245596005,1542486243771208605759,26810622290131017450845 %N A151344 Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, -1), (-1, 0), (-1, 1), (1, -1), (1, 0)}. %H A151344 A. Bostan, K. Raschel, B. Salvy, <a href="http://dx.doi.org/10.1016/j.jcta.2013.09.005">Non-D-finite excursions in the quarter plane</a>, J. Comb. Theory A 121 (2014) 45-63, Table 1 Tag 29, Tag 34. %H A151344 M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>. %t A151344 aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}] %K A151344 nonn,walk %O A151344 0,3 %A A151344 _Manuel Kauers_, Nov 18 2008