This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A151546 #11 Jun 11 2018 11:53:06 %S A151546 1,2,3,2,3,8,9,8,3,2,6,1,6,5,12,5,12,1,60,7,60,7,60,7,60,7,60,7,60,1, %T A151546 420,11,420,11,420,11,420,11,420,11,420,11,420,11,420,22,378,55,126, %U A151546 55,63,220,63,440,189,880,567,880,189,220,63,55,252,275,252,275,336,275,84,275,84 %N A151546 When computing A160256(n), it must be a multiple of a(n). %C A151546 In other words, a(n) = numerator of b(n-2)/b(n-1), where b() = A160256(). %C A151546 Then b(n) = smallest multiple of a(n) not already present in A160256. %H A151546 Alois P. Heinz, <a href="/A151546/b151546.txt">Table of n, a(n) for n = 3..10000</a> %p A151546 bb:= proc(n) option remember; false end: b:= proc(n) option remember; local k, m; if n<3 then bb(n):= true; n else m:= denom(b(n-1) /b(n-2)); for k from m by m while bb(k) do od; bb(k):= true; k fi end: a:= n-> numer(b(n-2) /b(n-1)): seq(a(n), n=3..100); # _Alois P. Heinz_, May 17 2009 %t A151546 bb[n_] := bb[n] = False; %t A151546 b[n_] := b[n] = Module[{k, m}, If[n < 3, bb[n] = True; n, m = Denominator[ b[n - 1] /b[n - 2]]; For[ k = m , bb[k], k += m]; bb[k] = True; k ]]; %t A151546 a[n_] := Numerator[b[n - 2] /b[n - 1]]; %t A151546 Table[a[n], {n, 3, 100}] %K A151546 nonn,look %O A151546 3,2 %A A151546 _N. J. A. Sloane_, May 16 2009