cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151552 G.f.: Product_{k>=1} (1 + x^(2^k-1) + x^(2^k)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 3, 4, 3, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 1, 1, 2, 2, 2, 3, 4, 3, 2, 3, 4, 4, 5, 7, 7, 4, 2, 3, 4, 4, 5, 7, 7, 5, 5, 7, 8, 9, 12, 14, 11, 5, 2, 3, 4, 4, 5, 7, 7, 5, 5
Offset: 0

Views

Author

N. J. A. Sloane, May 19 2009, Dec 26 2009

Keywords

Examples

			Written as a triangle:
1;
1;
1,1;
2,2,1,1;
2,2,2,3,4,3,1,1;
2,2,2,3,4,3,2,3,4,4,5,7,7,4,1,1;
2,2,2,3,4,3,2,3,4,4,5,7,7,4,2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,5,1,1;
2,2,2,3,4,3,2,3,4,4,5,7,7,4,2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,5,2,3,4,4,5,7,7,5,5,...
The rows converge to A151714.
		

Crossrefs

For generating functions of the form Product_{k>=c} (1 + a*x^(2^k-1) + b*x^2^k) for the following values of (a,b,c) see: (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694.

Programs

  • Maple
    G := mul( 1 + x^(2^n-1) + x^(2^n), n=1..20);
    wt := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end:
    f:=proc(n) local t1,k; global wt; t1:=0; for k from 0 to 20 do if n+k mod 2 = 0 then t1:=t1+binomial(wt(n+k),k); fi; od; t1; end;
  • Mathematica
    a[n_] := Sum[If[EvenQ[n + k], Binomial[DigitCount[n + k, 2, 1], k], 0], {k, 0, Floor[Log2[n + 1]]}]; Array[a, 100, 0] (* Amiram Eldar, Jul 29 2023 *)

Formula

a(n) = 1 for 0 <= n <= 3; thereafter write n = 2^i + j, with 0 <= j < 2^i, then a(n) = a(j) + a(j+1), except that a(2^(i+1)-2) = a(2^(i+1)-1) = 1.
a(n) = Sum_{k>=0, n+k even} binomial(A000120(n+k),k); the sum may be restricted further to k <= A000523(n+1). - Hagen von Eitzen, May 20 2009 [corrected by Amiram Eldar, Jul 29 2023]