cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151590 Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.

This page as a plain text file.
%I A151590 #13 Jul 16 2020 13:32:22
%S A151590 0,12,207,1392,7455,36540,171591,785856,3538215,15727740,69204927,
%T A151590 301988592,1308621327,5637142812,24159189015,103079212800,
%U A151590 438086661591,1855425868956,7834020344655,32985348829680,138538465095807,580542139461372,2427721674124647
%N A151590 Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
%H A151590 Andrew Howroyd, <a href="/A151590/b151590.txt">Table of n, a(n) for n = 1..500</a>
%H A151590 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (11,-43,73,-56,16).
%F A151590 a(n) = n*((3/2)*4^n - 9*n) for n > 1. - _Andrew Howroyd_, May 04 2020
%F A151590 From _Colin Barker_, Jul 16 2020: (Start)
%F A151590 G.f.: 3*x^2*(4 + 25*x - 123*x^2 + 56*x^3 - 16*x^4) / ((1 - x)^3*(1 - 4*x)^2).
%F A151590 a(n) = 11*a(n-1) - 43*a(n-2) + 73*a(n-3) - 56*a(n-4) + 16*a(n-5) for n>6.
%F A151590 (End)
%o A151590 (PARI) a(n) = if(n <= 1, 0, n*(3*4^n/2 - 9*n)) \\ _Andrew Howroyd_, May 04 2020
%o A151590 (PARI) concat(0, Vec(3*x^2*(4 + 25*x - 123*x^2 + 56*x^3 - 16*x^4) / ((1 - x)^3*(1 - 4*x)^2) + O(x^40))) \\ _Colin Barker_, Jul 16 2020
%Y A151590 Cf. A151583.
%K A151590 nonn,easy
%O A151590 1,2
%A A151590 _R. H. Hardin_, May 21 2009
%E A151590 Terms a(9) and beyond from _Andrew Howroyd_, May 04 2020