cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151614 Row sums of A156740.

This page as a plain text file.
%I A151614 #6 Jun 19 2021 03:22:19
%S A151614 1,2,155,9692,2511973,718800326,444293699995,322762198901872,
%T A151614 375936459278442977,517934214393739253282,977731835276897269439162,
%U A151614 2156693302479983573313980822,5955566258836615476254796252771,18881697488276229387856391071794848
%N A151614 Row sums of A156740.
%H A151614 G. C. Greubel, <a href="/A151614/b151614.txt">Table of n, a(n) for n = 0..225</a>
%F A151614 a(n) = Sum_{k=0..n} A156740(n, k).
%t A151614 A156740[n_, k_]:= Round[Product[Binomial[2*(n+j), 2*(k+j)]/Binomial[2*(n-k+j), 2*j], {j, 0, 7}]];
%t A151614 A151614[n_]:= A151614[n]= Sum[A156740[n,k], {k,0,n}];
%t A151614 Table[A151614[n], {n,0,30}] (* _G. C. Greubel_, Jun 19 2021 *)
%o A151614 (Sage)
%o A151614 def A156740(n, k): return round( product( binomial(2*(n+j), 2*(k+j))/binomial(2*(n-k+j), 2*j) for j in (0..7)) )
%o A151614 def A151614(n): return sum( A156740(n, k) for k in (0..n) )
%o A151614 [A151614(n) for n in (0..30)] # _G. C. Greubel_, Jun 19 2021
%Y A151614 Cf. A156740.
%K A151614 nonn
%O A151614 0,2
%A A151614 _N. J. A. Sloane_, May 28 2009
%E A151614 Terms a(11) onward added by _G. C. Greubel_, Jun 19 2021